Stability and equivalence of admissible pairs of arbitrary dimension for a compactification of the moduli space of stable vector bundles View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2022-07-26

AUTHORS

N. V. Timofeeva

ABSTRACT

Moduli spaces of stable vector bundles and compactifications of these moduli spaces are closely related to Yang–Mills gauge field theory. This paper, along with the preprint [arXiv:2012.11194], is devoted to finding an appropriate compactification of the moduli space of stable vector bundles on an algebraic variety of dimension \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\geqslant 2$$\end{document}. We consider admissible pairs \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$((\widetilde S, \widetilde L), \widetilde E)$$\end{document}, each of which consists of an \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N$$\end{document}-dimensional admissible scheme \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\widetilde S$$\end{document} of some class with a certain ample line bundle \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\widetilde L$$\end{document} and of a vector bundle \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\widetilde E$$\end{document}. An admissible pair can be obtained by a transformation (called a resolution) of a torsion-free coherent sheaf \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E$$\end{document} on a nonsingular \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N$$\end{document}-dimensional projective algebraic variety \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S$$\end{document} to a vector bundle \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\widetilde E$$\end{document} on a certain projective scheme \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\widetilde S$$\end{document}. The notions of stability (semistability) for admissible pairs and of M-equivalence for admissible pairs in the multidimensional case are introduced. We also study relations of the stability (semistability) for admissible pairs to the classical stability (semistability) for coherent sheaves under the resolution and relations of the M-equivalence for semistable admissible pairs to the S-equivalence of coherent sheaves under the resolution. The obtained results are intended for constructing a compactification of the moduli space of stable vector bundles and an ambient moduli space of semistable admissible pairs. More... »

PAGES

984-1000

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s004057792207008x

DOI

http://dx.doi.org/10.1134/s004057792207008x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1149785534


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Center of Integrable Systems, Demidov Yaroslavl State University, Yaroslavl, Russia", 
          "id": "http://www.grid.ac/institutes/grid.99921.3a", 
          "name": [
            "Center of Integrable Systems, Demidov Yaroslavl State University, Yaroslavl, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Timofeeva", 
        "givenName": "N. V.", 
        "id": "sg:person.010440250061.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010440250061.64"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00209-013-1170-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016907005", 
          "https://doi.org/10.1007/s00209-013-1170-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02867013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047859753", 
          "https://doi.org/10.1007/bf02867013"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0086420", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044091867", 
          "https://doi.org/10.1007/bfb0086420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0001434611070145", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047421325", 
          "https://doi.org/10.1134/s0001434611070145"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2022-07-26", 
    "datePublishedReg": "2022-07-26", 
    "description": "Abstract  Moduli spaces of stable vector bundles and compactifications of  these moduli spaces are closely related to Yang\u2013Mills gauge field  theory. This paper, along with the preprint [arXiv:2012.11194],  is devoted to finding an appropriate compactification of the moduli  space of stable vector bundles on an algebraic variety of dimension  \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\geqslant 2$$\\end{document}. We consider admissible pairs  \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$((\\widetilde S, \\widetilde L), \\widetilde E)$$\\end{document}, each of which  consists of an \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$N$$\\end{document}-dimensional admissible scheme \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\widetilde S$$\\end{document} of  some class with a certain ample line bundle \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\widetilde L$$\\end{document} and of a vector bundle \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\widetilde E$$\\end{document}. An admissible pair can be obtained by  a transformation (called a resolution) of a torsion-free  coherent sheaf \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$E$$\\end{document} on a nonsingular \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$N$$\\end{document}-dimensional projective  algebraic variety \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$S$$\\end{document} to a vector bundle \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\widetilde E$$\\end{document} on a certain  projective scheme \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\widetilde S$$\\end{document}. The notions of stability  (semistability) for admissible pairs and of  M-equivalence for admissible pairs in the multidimensional case are  introduced. We also study relations of the stability  (semistability) for admissible pairs to the classical  stability (semistability) for coherent sheaves under the  resolution and relations of the M-equivalence for semistable  admissible pairs to the S-equivalence of coherent sheaves under the  resolution. The obtained results are intended for constructing a compactification of the moduli space of stable vector bundles and an  ambient moduli space of semistable admissible pairs.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s004057792207008x", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1327888", 
        "issn": [
          "0040-5779", 
          "1573-9333"
        ], 
        "name": "Theoretical and Mathematical Physics", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "212"
      }
    ], 
    "keywords": [
      "moduli space", 
      "admissible pairs", 
      "coherent sheaves", 
      "vector bundles", 
      "stable vector bundles", 
      "algebraic varieties", 
      "Yang-Mills gauge fields", 
      "notion of stability", 
      "ample line bundle", 
      "projective scheme", 
      "multidimensional case", 
      "arbitrary dimension", 
      "gauge fields", 
      "line bundle", 
      "compactification", 
      "appropriate compactification", 
      "sheaves", 
      "S-equivalence", 
      "space", 
      "scheme", 
      "dimensions", 
      "theory", 
      "equivalence", 
      "stability", 
      "bundles", 
      "pairs", 
      "class", 
      "field", 
      "resolution", 
      "preprints", 
      "notion", 
      "transformation", 
      "relation", 
      "variety", 
      "cases", 
      "modulus", 
      "results", 
      "paper"
    ], 
    "name": "Stability and equivalence of admissible pairs of arbitrary dimension for a compactification of the moduli space of stable vector bundles", 
    "pagination": "984-1000", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1149785534"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s004057792207008x"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s004057792207008x", 
      "https://app.dimensions.ai/details/publication/pub.1149785534"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T16:07", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_953.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s004057792207008x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s004057792207008x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s004057792207008x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s004057792207008x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s004057792207008x'


 

This table displays all metadata directly associated to this object as RDF triples.

111 TRIPLES      21 PREDICATES      66 URIs      54 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s004057792207008x schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N89f66bd8557e469085283b742d136be7
4 schema:citation sg:pub.10.1007/bf02867013
5 sg:pub.10.1007/bfb0086420
6 sg:pub.10.1007/s00209-013-1170-9
7 sg:pub.10.1134/s0001434611070145
8 schema:datePublished 2022-07-26
9 schema:datePublishedReg 2022-07-26
10 schema:description Abstract Moduli spaces of stable vector bundles and compactifications of these moduli spaces are closely related to Yang–Mills gauge field theory. This paper, along with the preprint [arXiv:2012.11194], is devoted to finding an appropriate compactification of the moduli space of stable vector bundles on an algebraic variety of dimension \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\geqslant 2$$\end{document}. We consider admissible pairs \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$((\widetilde S, \widetilde L), \widetilde E)$$\end{document}, each of which consists of an \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N$$\end{document}-dimensional admissible scheme \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\widetilde S$$\end{document} of some class with a certain ample line bundle \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\widetilde L$$\end{document} and of a vector bundle \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\widetilde E$$\end{document}. An admissible pair can be obtained by a transformation (called a resolution) of a torsion-free coherent sheaf \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E$$\end{document} on a nonsingular \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N$$\end{document}-dimensional projective algebraic variety \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S$$\end{document} to a vector bundle \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\widetilde E$$\end{document} on a certain projective scheme \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\widetilde S$$\end{document}. The notions of stability (semistability) for admissible pairs and of M-equivalence for admissible pairs in the multidimensional case are introduced. We also study relations of the stability (semistability) for admissible pairs to the classical stability (semistability) for coherent sheaves under the resolution and relations of the M-equivalence for semistable admissible pairs to the S-equivalence of coherent sheaves under the resolution. The obtained results are intended for constructing a compactification of the moduli space of stable vector bundles and an ambient moduli space of semistable admissible pairs.
11 schema:genre article
12 schema:isAccessibleForFree false
13 schema:isPartOf N017369d4ada04364adf16d62b989cc44
14 N6cedb74a4d16416b81f06c11dcdb2eea
15 sg:journal.1327888
16 schema:keywords S-equivalence
17 Yang-Mills gauge fields
18 admissible pairs
19 algebraic varieties
20 ample line bundle
21 appropriate compactification
22 arbitrary dimension
23 bundles
24 cases
25 class
26 coherent sheaves
27 compactification
28 dimensions
29 equivalence
30 field
31 gauge fields
32 line bundle
33 moduli space
34 modulus
35 multidimensional case
36 notion
37 notion of stability
38 pairs
39 paper
40 preprints
41 projective scheme
42 relation
43 resolution
44 results
45 scheme
46 sheaves
47 space
48 stability
49 stable vector bundles
50 theory
51 transformation
52 variety
53 vector bundles
54 schema:name Stability and equivalence of admissible pairs of arbitrary dimension for a compactification of the moduli space of stable vector bundles
55 schema:pagination 984-1000
56 schema:productId N889537c77f4b4acc887b3b61e6322e38
57 Nf08f460bf7d945ed86c45cfb67f3b818
58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1149785534
59 https://doi.org/10.1134/s004057792207008x
60 schema:sdDatePublished 2022-09-02T16:07
61 schema:sdLicense https://scigraph.springernature.com/explorer/license/
62 schema:sdPublisher Naf290c0ea4364b169d63ce048bad08b1
63 schema:url https://doi.org/10.1134/s004057792207008x
64 sgo:license sg:explorer/license/
65 sgo:sdDataset articles
66 rdf:type schema:ScholarlyArticle
67 N017369d4ada04364adf16d62b989cc44 schema:issueNumber 1
68 rdf:type schema:PublicationIssue
69 N6cedb74a4d16416b81f06c11dcdb2eea schema:volumeNumber 212
70 rdf:type schema:PublicationVolume
71 N889537c77f4b4acc887b3b61e6322e38 schema:name doi
72 schema:value 10.1134/s004057792207008x
73 rdf:type schema:PropertyValue
74 N89f66bd8557e469085283b742d136be7 rdf:first sg:person.010440250061.64
75 rdf:rest rdf:nil
76 Naf290c0ea4364b169d63ce048bad08b1 schema:name Springer Nature - SN SciGraph project
77 rdf:type schema:Organization
78 Nf08f460bf7d945ed86c45cfb67f3b818 schema:name dimensions_id
79 schema:value pub.1149785534
80 rdf:type schema:PropertyValue
81 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
82 schema:name Mathematical Sciences
83 rdf:type schema:DefinedTerm
84 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
85 schema:name Pure Mathematics
86 rdf:type schema:DefinedTerm
87 sg:journal.1327888 schema:issn 0040-5779
88 1573-9333
89 schema:name Theoretical and Mathematical Physics
90 schema:publisher Pleiades Publishing
91 rdf:type schema:Periodical
92 sg:person.010440250061.64 schema:affiliation grid-institutes:grid.99921.3a
93 schema:familyName Timofeeva
94 schema:givenName N. V.
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010440250061.64
96 rdf:type schema:Person
97 sg:pub.10.1007/bf02867013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047859753
98 https://doi.org/10.1007/bf02867013
99 rdf:type schema:CreativeWork
100 sg:pub.10.1007/bfb0086420 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044091867
101 https://doi.org/10.1007/bfb0086420
102 rdf:type schema:CreativeWork
103 sg:pub.10.1007/s00209-013-1170-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016907005
104 https://doi.org/10.1007/s00209-013-1170-9
105 rdf:type schema:CreativeWork
106 sg:pub.10.1134/s0001434611070145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047421325
107 https://doi.org/10.1134/s0001434611070145
108 rdf:type schema:CreativeWork
109 grid-institutes:grid.99921.3a schema:alternateName Center of Integrable Systems, Demidov Yaroslavl State University, Yaroslavl, Russia
110 schema:name Center of Integrable Systems, Demidov Yaroslavl State University, Yaroslavl, Russia
111 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...