Existence and stability of a stable stationary solution with a boundary layer for a system of reaction–diffusion equations with Neumann ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2022-07-26

AUTHORS

N. N. Nefedov, N. N. Deryugina

ABSTRACT

We consider an initial boundary value problem for a singularly perturbed parabolic system of two reaction–diffusion-type equations with Neumann conditions, where the diffusion coefficients are of different degrees of smallness and the right-hand sides need not be quasimonotonic. We obtain an asymptotic approximation of the stationary solution with a boundary layer and prove existence theorems, the asymptotic stability in the sense of Lyapunov, and the local uniqueness of such a solution. The obtained result is applied to a class of problems of chemical kinetics. More... »

PAGES

962-971

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0040577922070066

DOI

http://dx.doi.org/10.1134/s0040577922070066

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1149790939


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Physical Faculty, Lomonosov Moscow State University, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.14476.30", 
          "name": [
            "Physical Faculty, Lomonosov Moscow State University, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nefedov", 
        "givenName": "N. N.", 
        "id": "sg:person.013500104452.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013500104452.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Physical Faculty, Lomonosov Moscow State University, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.14476.30", 
          "name": [
            "Physical Faculty, Lomonosov Moscow State University, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Deryugina", 
        "givenName": "N. N.", 
        "id": "sg:person.014652435537.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014652435537.77"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1134/s0965542519070108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1120375894", 
          "https://doi.org/10.1134/s0965542519070108"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/b:joth.0000021571.21423.52", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014643972", 
          "https://doi.org/10.1023/b:joth.0000021571.21423.52"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0965542521120095", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1144628894", 
          "https://doi.org/10.1134/s0965542521120095"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4615-3034-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042891243", 
          "https://doi.org/10.1007/978-1-4615-3034-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0012266120040060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1127315068", 
          "https://doi.org/10.1134/s0012266120040060"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.3103/s0027134918030128", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105810950", 
          "https://doi.org/10.3103/s0027134918030128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0965542521110130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1143725310", 
          "https://doi.org/10.1134/s0965542521110130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0965542513090054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043481764", 
          "https://doi.org/10.1134/s0965542513090054"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2022-07-26", 
    "datePublishedReg": "2022-07-26", 
    "description": "Abstract  We consider an initial boundary value problem for a singularly  perturbed parabolic system of two reaction\u2013diffusion-type equations  with Neumann conditions, where the diffusion coefficients are of  different degrees of smallness and the right-hand sides need not be  quasimonotonic. We obtain an asymptotic approximation of the  stationary solution with a boundary layer and prove existence  theorems, the asymptotic stability in the sense of Lyapunov, and the  local uniqueness of such a solution. The obtained result is applied  to a class of problems of chemical kinetics.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s0040577922070066", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.8412767", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1327888", 
        "issn": [
          "0040-5779", 
          "1573-9333"
        ], 
        "name": "Theoretical and Mathematical Physics", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "212"
      }
    ], 
    "keywords": [
      "stationary solutions", 
      "initial-boundary value problem", 
      "stable stationary solutions", 
      "reaction-diffusion equations", 
      "sense of Lyapunov", 
      "boundary value problem", 
      "right-hand side", 
      "class of problems", 
      "Neumann boundary conditions", 
      "asymptotic stability", 
      "parabolic systems", 
      "asymptotic approximation", 
      "value problem", 
      "type equation", 
      "local uniqueness", 
      "Neumann condition", 
      "boundary conditions", 
      "equations", 
      "boundary layer", 
      "chemical kinetics", 
      "solution", 
      "Lyapunov", 
      "theorem", 
      "approximation", 
      "existence", 
      "problem", 
      "uniqueness", 
      "diffusion coefficient", 
      "smallness", 
      "class", 
      "system", 
      "stability", 
      "coefficient", 
      "layer", 
      "conditions", 
      "sense", 
      "results", 
      "different degrees", 
      "degree", 
      "side", 
      "kinetics"
    ], 
    "name": "Existence and stability of a stable stationary solution with a boundary layer for a system of reaction\u2013diffusion equations with Neumann boundary conditions", 
    "pagination": "962-971", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1149790939"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0040577922070066"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0040577922070066", 
      "https://app.dimensions.ai/details/publication/pub.1149790939"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T16:06", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_931.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s0040577922070066"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0040577922070066'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0040577922070066'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0040577922070066'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0040577922070066'


 

This table displays all metadata directly associated to this object as RDF triples.

139 TRIPLES      21 PREDICATES      73 URIs      57 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0040577922070066 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nbdf3ffbc7bf944f19639f942da442883
4 schema:citation sg:pub.10.1007/978-1-4615-3034-3
5 sg:pub.10.1023/b:joth.0000021571.21423.52
6 sg:pub.10.1134/s0012266120040060
7 sg:pub.10.1134/s0965542513090054
8 sg:pub.10.1134/s0965542519070108
9 sg:pub.10.1134/s0965542521110130
10 sg:pub.10.1134/s0965542521120095
11 sg:pub.10.3103/s0027134918030128
12 schema:datePublished 2022-07-26
13 schema:datePublishedReg 2022-07-26
14 schema:description Abstract We consider an initial boundary value problem for a singularly perturbed parabolic system of two reaction–diffusion-type equations with Neumann conditions, where the diffusion coefficients are of different degrees of smallness and the right-hand sides need not be quasimonotonic. We obtain an asymptotic approximation of the stationary solution with a boundary layer and prove existence theorems, the asymptotic stability in the sense of Lyapunov, and the local uniqueness of such a solution. The obtained result is applied to a class of problems of chemical kinetics.
15 schema:genre article
16 schema:isAccessibleForFree false
17 schema:isPartOf N94c55b71ba5841d28a4d3be1b915a2e9
18 Nede10e5222d24648b64cd392df48f335
19 sg:journal.1327888
20 schema:keywords Lyapunov
21 Neumann boundary conditions
22 Neumann condition
23 approximation
24 asymptotic approximation
25 asymptotic stability
26 boundary conditions
27 boundary layer
28 boundary value problem
29 chemical kinetics
30 class
31 class of problems
32 coefficient
33 conditions
34 degree
35 different degrees
36 diffusion coefficient
37 equations
38 existence
39 initial-boundary value problem
40 kinetics
41 layer
42 local uniqueness
43 parabolic systems
44 problem
45 reaction-diffusion equations
46 results
47 right-hand side
48 sense
49 sense of Lyapunov
50 side
51 smallness
52 solution
53 stability
54 stable stationary solutions
55 stationary solutions
56 system
57 theorem
58 type equation
59 uniqueness
60 value problem
61 schema:name Existence and stability of a stable stationary solution with a boundary layer for a system of reaction–diffusion equations with Neumann boundary conditions
62 schema:pagination 962-971
63 schema:productId N331bb66167ae4a03adeef17507e4838b
64 N9c29dd7d6d8642c0a203ce03205a2537
65 schema:sameAs https://app.dimensions.ai/details/publication/pub.1149790939
66 https://doi.org/10.1134/s0040577922070066
67 schema:sdDatePublished 2022-09-02T16:06
68 schema:sdLicense https://scigraph.springernature.com/explorer/license/
69 schema:sdPublisher Na64f3fe0ebf44e9baf8018c1f459d116
70 schema:url https://doi.org/10.1134/s0040577922070066
71 sgo:license sg:explorer/license/
72 sgo:sdDataset articles
73 rdf:type schema:ScholarlyArticle
74 N331bb66167ae4a03adeef17507e4838b schema:name dimensions_id
75 schema:value pub.1149790939
76 rdf:type schema:PropertyValue
77 N4a3b87cbeb29426788a6ee1fd9ae6135 rdf:first sg:person.014652435537.77
78 rdf:rest rdf:nil
79 N94c55b71ba5841d28a4d3be1b915a2e9 schema:volumeNumber 212
80 rdf:type schema:PublicationVolume
81 N9c29dd7d6d8642c0a203ce03205a2537 schema:name doi
82 schema:value 10.1134/s0040577922070066
83 rdf:type schema:PropertyValue
84 Na64f3fe0ebf44e9baf8018c1f459d116 schema:name Springer Nature - SN SciGraph project
85 rdf:type schema:Organization
86 Nbdf3ffbc7bf944f19639f942da442883 rdf:first sg:person.013500104452.63
87 rdf:rest N4a3b87cbeb29426788a6ee1fd9ae6135
88 Nede10e5222d24648b64cd392df48f335 schema:issueNumber 1
89 rdf:type schema:PublicationIssue
90 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
91 schema:name Mathematical Sciences
92 rdf:type schema:DefinedTerm
93 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
94 schema:name Pure Mathematics
95 rdf:type schema:DefinedTerm
96 sg:grant.8412767 http://pending.schema.org/fundedItem sg:pub.10.1134/s0040577922070066
97 rdf:type schema:MonetaryGrant
98 sg:journal.1327888 schema:issn 0040-5779
99 1573-9333
100 schema:name Theoretical and Mathematical Physics
101 schema:publisher Pleiades Publishing
102 rdf:type schema:Periodical
103 sg:person.013500104452.63 schema:affiliation grid-institutes:grid.14476.30
104 schema:familyName Nefedov
105 schema:givenName N. N.
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013500104452.63
107 rdf:type schema:Person
108 sg:person.014652435537.77 schema:affiliation grid-institutes:grid.14476.30
109 schema:familyName Deryugina
110 schema:givenName N. N.
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014652435537.77
112 rdf:type schema:Person
113 sg:pub.10.1007/978-1-4615-3034-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042891243
114 https://doi.org/10.1007/978-1-4615-3034-3
115 rdf:type schema:CreativeWork
116 sg:pub.10.1023/b:joth.0000021571.21423.52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014643972
117 https://doi.org/10.1023/b:joth.0000021571.21423.52
118 rdf:type schema:CreativeWork
119 sg:pub.10.1134/s0012266120040060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1127315068
120 https://doi.org/10.1134/s0012266120040060
121 rdf:type schema:CreativeWork
122 sg:pub.10.1134/s0965542513090054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043481764
123 https://doi.org/10.1134/s0965542513090054
124 rdf:type schema:CreativeWork
125 sg:pub.10.1134/s0965542519070108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1120375894
126 https://doi.org/10.1134/s0965542519070108
127 rdf:type schema:CreativeWork
128 sg:pub.10.1134/s0965542521110130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1143725310
129 https://doi.org/10.1134/s0965542521110130
130 rdf:type schema:CreativeWork
131 sg:pub.10.1134/s0965542521120095 schema:sameAs https://app.dimensions.ai/details/publication/pub.1144628894
132 https://doi.org/10.1134/s0965542521120095
133 rdf:type schema:CreativeWork
134 sg:pub.10.3103/s0027134918030128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105810950
135 https://doi.org/10.3103/s0027134918030128
136 rdf:type schema:CreativeWork
137 grid-institutes:grid.14476.30 schema:alternateName Physical Faculty, Lomonosov Moscow State University, Moscow, Russia
138 schema:name Physical Faculty, Lomonosov Moscow State University, Moscow, Russia
139 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...