Local bifurcations and a global attractor for two versions of the weakly dissipative Ginzburg–Landau equation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2022-07-26

AUTHORS

A. N. Kulikov, D. A. Kulikov

ABSTRACT

We consider the periodic boundary value problem for two variants of a weakly dissipative complex Ginzburg–Landau equation. In the first case, we study a variant of such an equation that contains the cubic and quintic nonlinear terms. We study the problem of local bifurcations of traveling periodic waves under stability changes. We show that a countable set of two-dimensional invariant tori arises as a result of such bifurcations. Both types of bifurcations are possible in the considered formulation of the problem, soft (postcritical) and hard (subcritical) ones, depending on the choice of the coefficients in the equation. We obtain asymptotic formulas for the solutions forming the invariant tori. We also study the periodic boundary value problem for the equation that is called the nonlocal Ginzburg–Landau equation in physics. We show that the boundary value problem in the considered variant has an infinite-dimensional global attractor. We present the solutions forming such an attractor. More... »

PAGES

925-943

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0040577922070042

DOI

http://dx.doi.org/10.1134/s0040577922070042

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1149785909


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Demidov Yaroslavl State University, Yaroslavl, Russia", 
          "id": "http://www.grid.ac/institutes/grid.99921.3a", 
          "name": [
            "Demidov Yaroslavl State University, Yaroslavl, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kulikov", 
        "givenName": "A. N.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Demidov Yaroslavl State University, Yaroslavl, Russia", 
          "id": "http://www.grid.ac/institutes/grid.99921.3a", 
          "name": [
            "Demidov Yaroslavl State University, Yaroslavl, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kulikov", 
        "givenName": "D. A.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-1-4757-5037-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037013638", 
          "https://doi.org/10.1007/978-1-4757-5037-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00916648", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028717642", 
          "https://doi.org/10.1007/bf00916648"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0012266110090065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003201844", 
          "https://doi.org/10.1134/s0012266110090065"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-6374-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035600588", 
          "https://doi.org/10.1007/978-1-4612-6374-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0005117921020065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1136163964", 
          "https://doi.org/10.1134/s0005117921020065"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-69689-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004761286", 
          "https://doi.org/10.1007/978-3-642-69689-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-0645-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016915604", 
          "https://doi.org/10.1007/978-1-4612-0645-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-1140-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044255212", 
          "https://doi.org/10.1007/978-1-4612-1140-2"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2022-07-26", 
    "datePublishedReg": "2022-07-26", 
    "description": "Abstract  We consider the periodic boundary value problem for two variants of  a weakly dissipative complex Ginzburg\u2013Landau equation. In the first  case, we study a variant of such an equation that contains the cubic  and quintic nonlinear terms. We study the problem of local  bifurcations of traveling periodic waves under stability changes. We  show that a countable set of two-dimensional invariant tori arises  as a result of such bifurcations. Both types of bifurcations are  possible in the considered formulation of the problem, soft  (postcritical) and hard (subcritical) ones,  depending on the choice of the coefficients in the equation. We  obtain asymptotic formulas for the solutions forming the invariant  tori. We also study the periodic boundary value problem for the  equation that is called the nonlocal Ginzburg\u2013Landau equation in  physics. We show that the boundary value problem in the considered  variant has an infinite-dimensional global attractor. We present the  solutions forming such an attractor.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s0040577922070042", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1327888", 
        "issn": [
          "0040-5779", 
          "1573-9333"
        ], 
        "name": "Theoretical and Mathematical Physics", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "212"
      }
    ], 
    "keywords": [
      "Ginzburg-Landau equation", 
      "boundary value problem", 
      "periodic boundary value problem", 
      "value problem", 
      "global attractor", 
      "two-dimensional invariant torus", 
      "complex Ginzburg-Landau equation", 
      "quintic nonlinear term", 
      "nonlocal Ginzburg\u2013Landau equation", 
      "type of bifurcation", 
      "nonlinear terms", 
      "invariant tori", 
      "periodic waves", 
      "local bifurcations", 
      "such bifurcations", 
      "asymptotic formula", 
      "equations", 
      "countable set", 
      "attractors", 
      "bifurcation", 
      "problem", 
      "solution", 
      "physics", 
      "torus", 
      "waves", 
      "formula", 
      "formulation", 
      "stability changes", 
      "hard ones", 
      "set", 
      "coefficient", 
      "version", 
      "terms", 
      "one", 
      "variants", 
      "cases", 
      "results", 
      "choice", 
      "types", 
      "changes"
    ], 
    "name": "Local bifurcations and a global attractor for two versions of the weakly dissipative Ginzburg\u2013Landau equation", 
    "pagination": "925-943", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1149785909"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0040577922070042"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0040577922070042", 
      "https://app.dimensions.ai/details/publication/pub.1149785909"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-11-24T21:08", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_919.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s0040577922070042"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0040577922070042'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0040577922070042'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0040577922070042'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0040577922070042'


 

This table displays all metadata directly associated to this object as RDF triples.

134 TRIPLES      21 PREDICATES      72 URIs      56 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0040577922070042 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N448785e6a4d24740891a3cf804bc1814
4 schema:citation sg:pub.10.1007/978-1-4612-0645-3
5 sg:pub.10.1007/978-1-4612-1140-2
6 sg:pub.10.1007/978-1-4612-6374-6
7 sg:pub.10.1007/978-1-4757-5037-9
8 sg:pub.10.1007/978-3-642-69689-3
9 sg:pub.10.1007/bf00916648
10 sg:pub.10.1134/s0005117921020065
11 sg:pub.10.1134/s0012266110090065
12 schema:datePublished 2022-07-26
13 schema:datePublishedReg 2022-07-26
14 schema:description Abstract We consider the periodic boundary value problem for two variants of a weakly dissipative complex Ginzburg–Landau equation. In the first case, we study a variant of such an equation that contains the cubic and quintic nonlinear terms. We study the problem of local bifurcations of traveling periodic waves under stability changes. We show that a countable set of two-dimensional invariant tori arises as a result of such bifurcations. Both types of bifurcations are possible in the considered formulation of the problem, soft (postcritical) and hard (subcritical) ones, depending on the choice of the coefficients in the equation. We obtain asymptotic formulas for the solutions forming the invariant tori. We also study the periodic boundary value problem for the equation that is called the nonlocal Ginzburg–Landau equation in physics. We show that the boundary value problem in the considered variant has an infinite-dimensional global attractor. We present the solutions forming such an attractor.
15 schema:genre article
16 schema:isAccessibleForFree false
17 schema:isPartOf Na762986874cb47c78b4fdd060c0697d6
18 Ne24f9c41941148ecb8a05b5aec067b81
19 sg:journal.1327888
20 schema:keywords Ginzburg-Landau equation
21 asymptotic formula
22 attractors
23 bifurcation
24 boundary value problem
25 cases
26 changes
27 choice
28 coefficient
29 complex Ginzburg-Landau equation
30 countable set
31 equations
32 formula
33 formulation
34 global attractor
35 hard ones
36 invariant tori
37 local bifurcations
38 nonlinear terms
39 nonlocal Ginzburg–Landau equation
40 one
41 periodic boundary value problem
42 periodic waves
43 physics
44 problem
45 quintic nonlinear term
46 results
47 set
48 solution
49 stability changes
50 such bifurcations
51 terms
52 torus
53 two-dimensional invariant torus
54 type of bifurcation
55 types
56 value problem
57 variants
58 version
59 waves
60 schema:name Local bifurcations and a global attractor for two versions of the weakly dissipative Ginzburg–Landau equation
61 schema:pagination 925-943
62 schema:productId N2134351064a04abca744eba18aac2b01
63 Naf2d0dcdf41645959fd072e4f91ff66b
64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1149785909
65 https://doi.org/10.1134/s0040577922070042
66 schema:sdDatePublished 2022-11-24T21:08
67 schema:sdLicense https://scigraph.springernature.com/explorer/license/
68 schema:sdPublisher N42ed3f1e2b6b4358bd816472a97a5d8d
69 schema:url https://doi.org/10.1134/s0040577922070042
70 sgo:license sg:explorer/license/
71 sgo:sdDataset articles
72 rdf:type schema:ScholarlyArticle
73 N2134351064a04abca744eba18aac2b01 schema:name doi
74 schema:value 10.1134/s0040577922070042
75 rdf:type schema:PropertyValue
76 N345223d66c0f4a4a925531ca09507d48 schema:affiliation grid-institutes:grid.99921.3a
77 schema:familyName Kulikov
78 schema:givenName A. N.
79 rdf:type schema:Person
80 N42ed3f1e2b6b4358bd816472a97a5d8d schema:name Springer Nature - SN SciGraph project
81 rdf:type schema:Organization
82 N448785e6a4d24740891a3cf804bc1814 rdf:first N345223d66c0f4a4a925531ca09507d48
83 rdf:rest N9b02832c5839487fb72ca12988f846b1
84 N5a74b3f2bbbe4202943eeee7447c210f schema:affiliation grid-institutes:grid.99921.3a
85 schema:familyName Kulikov
86 schema:givenName D. A.
87 rdf:type schema:Person
88 N9b02832c5839487fb72ca12988f846b1 rdf:first N5a74b3f2bbbe4202943eeee7447c210f
89 rdf:rest rdf:nil
90 Na762986874cb47c78b4fdd060c0697d6 schema:issueNumber 1
91 rdf:type schema:PublicationIssue
92 Naf2d0dcdf41645959fd072e4f91ff66b schema:name dimensions_id
93 schema:value pub.1149785909
94 rdf:type schema:PropertyValue
95 Ne24f9c41941148ecb8a05b5aec067b81 schema:volumeNumber 212
96 rdf:type schema:PublicationVolume
97 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
98 schema:name Mathematical Sciences
99 rdf:type schema:DefinedTerm
100 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
101 schema:name Pure Mathematics
102 rdf:type schema:DefinedTerm
103 sg:journal.1327888 schema:issn 0040-5779
104 1573-9333
105 schema:name Theoretical and Mathematical Physics
106 schema:publisher Pleiades Publishing
107 rdf:type schema:Periodical
108 sg:pub.10.1007/978-1-4612-0645-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016915604
109 https://doi.org/10.1007/978-1-4612-0645-3
110 rdf:type schema:CreativeWork
111 sg:pub.10.1007/978-1-4612-1140-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044255212
112 https://doi.org/10.1007/978-1-4612-1140-2
113 rdf:type schema:CreativeWork
114 sg:pub.10.1007/978-1-4612-6374-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035600588
115 https://doi.org/10.1007/978-1-4612-6374-6
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/978-1-4757-5037-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037013638
118 https://doi.org/10.1007/978-1-4757-5037-9
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/978-3-642-69689-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004761286
121 https://doi.org/10.1007/978-3-642-69689-3
122 rdf:type schema:CreativeWork
123 sg:pub.10.1007/bf00916648 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028717642
124 https://doi.org/10.1007/bf00916648
125 rdf:type schema:CreativeWork
126 sg:pub.10.1134/s0005117921020065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1136163964
127 https://doi.org/10.1134/s0005117921020065
128 rdf:type schema:CreativeWork
129 sg:pub.10.1134/s0012266110090065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003201844
130 https://doi.org/10.1134/s0012266110090065
131 rdf:type schema:CreativeWork
132 grid-institutes:grid.99921.3a schema:alternateName Demidov Yaroslavl State University, Yaroslavl, Russia
133 schema:name Demidov Yaroslavl State University, Yaroslavl, Russia
134 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...