Quasidifferential operator and quantum argument shift method View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2022-07-26

AUTHORS

Y. Ikeda

ABSTRACT

We describe an explicit formula for the first-order quasiderivation of an arbitrary central element of the universal enveloping algebra of a general linear Lie algebra. We apply it to show that derivations of any two central elements of the universal enveloping algebra commute. This contributes to the Vinberg problem of finding commutative subalgebras in universal enveloping algebras with the underlying Poisson algebras determined by the argument shift method. More... »

PAGES

918-924

References to SciGraph publications

  • 2012-03-02. Feigin–Frenkel center in types B, C and D in INVENTIONES MATHEMATICAE
  • 2006-07. The argument shift method and the Gaudin model in FUNCTIONAL ANALYSIS AND ITS APPLICATIONS
  • 1976-10. Note on the integration of Euler's equations of the dynamics of an n-dimensional rigid body in FUNCTIONAL ANALYSIS AND ITS APPLICATIONS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1134/s0040577922070030

    DOI

    http://dx.doi.org/10.1134/s0040577922070030

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1149788476


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Faculty of Mechanics and Mathematics, Moscow State University, Moscow, Russia", 
              "id": "http://www.grid.ac/institutes/grid.14476.30", 
              "name": [
                "Faculty of Mechanics and Mathematics, Moscow State University, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ikeda", 
            "givenName": "Y.", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s00222-012-0390-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048286925", 
              "https://doi.org/10.1007/s00222-012-0390-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01076037", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028414001", 
              "https://doi.org/10.1007/bf01076037"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10688-006-0030-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048211328", 
              "https://doi.org/10.1007/s10688-006-0030-3"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2022-07-26", 
        "datePublishedReg": "2022-07-26", 
        "description": "Abstract  We describe an explicit formula for the first-order quasiderivation  of an arbitrary central element of the universal enveloping algebra  of a general linear Lie algebra. We apply it to show that  derivations of any two central elements of the universal enveloping  algebra commute. This contributes to the Vinberg problem of finding  commutative subalgebras in universal enveloping algebras with the  underlying Poisson algebras determined by the argument shift method.", 
        "genre": "article", 
        "id": "sg:pub.10.1134/s0040577922070030", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1327888", 
            "issn": [
              "0040-5779", 
              "1573-9333"
            ], 
            "name": "Theoretical and Mathematical Physics", 
            "publisher": "Pleiades Publishing", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "212"
          }
        ], 
        "keywords": [
          "argument shift method", 
          "general linear Lie algebra", 
          "linear Lie algebra", 
          "universal enveloping algebra", 
          "Lie algebra", 
          "commutative subalgebra", 
          "Poisson algebra", 
          "enveloping algebra", 
          "universal enveloping", 
          "algebra", 
          "explicit formula", 
          "shift method", 
          "quasiderivations", 
          "subalgebra", 
          "operators", 
          "derivation", 
          "formula", 
          "problem", 
          "enveloping", 
          "commute", 
          "central element", 
          "elements", 
          "method"
        ], 
        "name": "Quasidifferential operator and quantum argument shift method", 
        "pagination": "918-924", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1149788476"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1134/s0040577922070030"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1134/s0040577922070030", 
          "https://app.dimensions.ai/details/publication/pub.1149788476"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-09-02T16:07", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_953.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1134/s0040577922070030"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0040577922070030'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0040577922070030'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0040577922070030'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0040577922070030'


     

    This table displays all metadata directly associated to this object as RDF triples.

    91 TRIPLES      21 PREDICATES      50 URIs      39 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1134/s0040577922070030 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author Nb6ecab5e7a7e40e2ae8220acd56a36f1
    4 schema:citation sg:pub.10.1007/bf01076037
    5 sg:pub.10.1007/s00222-012-0390-7
    6 sg:pub.10.1007/s10688-006-0030-3
    7 schema:datePublished 2022-07-26
    8 schema:datePublishedReg 2022-07-26
    9 schema:description Abstract We describe an explicit formula for the first-order quasiderivation of an arbitrary central element of the universal enveloping algebra of a general linear Lie algebra. We apply it to show that derivations of any two central elements of the universal enveloping algebra commute. This contributes to the Vinberg problem of finding commutative subalgebras in universal enveloping algebras with the underlying Poisson algebras determined by the argument shift method.
    10 schema:genre article
    11 schema:isAccessibleForFree false
    12 schema:isPartOf N1eef43a681bd4fe4918872a5a310c8e7
    13 N9104b0b5a40c439293423cdc7c9d1e62
    14 sg:journal.1327888
    15 schema:keywords Lie algebra
    16 Poisson algebra
    17 algebra
    18 argument shift method
    19 central element
    20 commutative subalgebra
    21 commute
    22 derivation
    23 elements
    24 enveloping
    25 enveloping algebra
    26 explicit formula
    27 formula
    28 general linear Lie algebra
    29 linear Lie algebra
    30 method
    31 operators
    32 problem
    33 quasiderivations
    34 shift method
    35 subalgebra
    36 universal enveloping
    37 universal enveloping algebra
    38 schema:name Quasidifferential operator and quantum argument shift method
    39 schema:pagination 918-924
    40 schema:productId N5c7a49617f5043a7b3af0533c4c7cfb4
    41 Ne6994b516e5f49d1895bec4a0dee98c5
    42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1149788476
    43 https://doi.org/10.1134/s0040577922070030
    44 schema:sdDatePublished 2022-09-02T16:07
    45 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    46 schema:sdPublisher Nfd001e0616f94481b77b2bce45aaa3ff
    47 schema:url https://doi.org/10.1134/s0040577922070030
    48 sgo:license sg:explorer/license/
    49 sgo:sdDataset articles
    50 rdf:type schema:ScholarlyArticle
    51 N1eef43a681bd4fe4918872a5a310c8e7 schema:volumeNumber 212
    52 rdf:type schema:PublicationVolume
    53 N279ce99021fe47c9a5b9eea3a92d5876 schema:affiliation grid-institutes:grid.14476.30
    54 schema:familyName Ikeda
    55 schema:givenName Y.
    56 rdf:type schema:Person
    57 N5c7a49617f5043a7b3af0533c4c7cfb4 schema:name dimensions_id
    58 schema:value pub.1149788476
    59 rdf:type schema:PropertyValue
    60 N9104b0b5a40c439293423cdc7c9d1e62 schema:issueNumber 1
    61 rdf:type schema:PublicationIssue
    62 Nb6ecab5e7a7e40e2ae8220acd56a36f1 rdf:first N279ce99021fe47c9a5b9eea3a92d5876
    63 rdf:rest rdf:nil
    64 Ne6994b516e5f49d1895bec4a0dee98c5 schema:name doi
    65 schema:value 10.1134/s0040577922070030
    66 rdf:type schema:PropertyValue
    67 Nfd001e0616f94481b77b2bce45aaa3ff schema:name Springer Nature - SN SciGraph project
    68 rdf:type schema:Organization
    69 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    70 schema:name Mathematical Sciences
    71 rdf:type schema:DefinedTerm
    72 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    73 schema:name Pure Mathematics
    74 rdf:type schema:DefinedTerm
    75 sg:journal.1327888 schema:issn 0040-5779
    76 1573-9333
    77 schema:name Theoretical and Mathematical Physics
    78 schema:publisher Pleiades Publishing
    79 rdf:type schema:Periodical
    80 sg:pub.10.1007/bf01076037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028414001
    81 https://doi.org/10.1007/bf01076037
    82 rdf:type schema:CreativeWork
    83 sg:pub.10.1007/s00222-012-0390-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048286925
    84 https://doi.org/10.1007/s00222-012-0390-7
    85 rdf:type schema:CreativeWork
    86 sg:pub.10.1007/s10688-006-0030-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048211328
    87 https://doi.org/10.1007/s10688-006-0030-3
    88 rdf:type schema:CreativeWork
    89 grid-institutes:grid.14476.30 schema:alternateName Faculty of Mechanics and Mathematics, Moscow State University, Moscow, Russia
    90 schema:name Faculty of Mechanics and Mathematics, Moscow State University, Moscow, Russia
    91 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...