Nonautonomous vector fields on : Simple dynamics and wild embedding of separatrices View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2022-07-26

AUTHORS

V. Z. Grines, L. M. Lerman

ABSTRACT

We construct new substantive examples of nonautonomous vector fields on a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3$$\end{document}-dimensional sphere having simple dynamics but nontrivial topology. The construction is based on two ideas : the theory of diffeomorphisms with wild separatrix embedding and the construction of a nonautonomous suspension over a diffeomorphism. As a result, we obtain periodic, almost periodic, or even nonrecurrent vector fields that have a finite number of special integral curves possessing exponential dichotomy on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb R$$\end{document} such that among them there is one saddle integral curve (with a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(3,2)$$\end{document} dichotomy type) with a wildly embedded \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2$$\end{document}-dimensional unstable separatrix and a wildly embedded \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3$$\end{document}-dimensional stable manifold. All other integral curves tend to these special integral curves as \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t\to \pm \infty$$\end{document}. We also construct other vector fields having \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\geqslant 2$$\end{document} special saddle integral curves with the tamely embedded \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2$$\end{document}-dimensional unstable separatrices forming mildly wild frames in the sense of Debrunner–Fox. In the case of periodic vector fields, the corresponding specific integral curves are periodic with the period of the vector field, and are almost periodic in the case of an almost periodic vector field. More... »

PAGES

903-917

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0040577922070029

DOI

http://dx.doi.org/10.1134/s0040577922070029

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1149789391


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National Research University \u201cHigher School of Economics in Nizhny Novgorod\u201d, Nizhny Novgorod, Russia", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "National Research University \u201cHigher School of Economics in Nizhny Novgorod\u201d, Nizhny Novgorod, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Grines", 
        "givenName": "V. Z.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Research University \u201cHigher School of Economics in Nizhny Novgorod\u201d, Nizhny Novgorod, Russia", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "National Research University \u201cHigher School of Economics in Nizhny Novgorod\u201d, Nizhny Novgorod, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lerman", 
        "givenName": "L. M.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1023/a:1009508728879", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046059860", 
          "https://doi.org/10.1023/a:1009508728879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-09819-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033203596", 
          "https://doi.org/10.1007/978-0-387-09819-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0060395", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018327079", 
          "https://doi.org/10.1007/bfb0060395"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01789010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035099051", 
          "https://doi.org/10.1007/bf01789010"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-44847-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052680166", 
          "https://doi.org/10.1007/978-3-319-44847-3"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2022-07-26", 
    "datePublishedReg": "2022-07-26", 
    "description": "Abstract  We construct new substantive examples of nonautonomous vector fields  on a \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$3$$\\end{document}-dimensional sphere having simple dynamics but nontrivial  topology. The construction is based on two ideas : the  theory of diffeomorphisms with wild separatrix embedding and the  construction of a nonautonomous suspension over a diffeomorphism. As  a result, we obtain periodic, almost periodic, or even nonrecurrent  vector fields that have a finite number of special integral curves  possessing exponential dichotomy on \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\mathbb R$$\\end{document} such that among them  there is one saddle integral curve (with a \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$(3,2)$$\\end{document} dichotomy  type) with a wildly embedded \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$2$$\\end{document}-dimensional unstable  separatrix and a wildly embedded \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$3$$\\end{document}-dimensional stable  manifold. All other integral curves tend to these special integral  curves as \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$t\\to \\pm \\infty$$\\end{document}. We also construct other vector fields  having \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$k\\geqslant 2$$\\end{document} special saddle integral curves with the tamely  embedded \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$2$$\\end{document}-dimensional unstable separatrices forming mildly wild  frames in the sense of Debrunner\u2013Fox. In the case of periodic  vector fields, the corresponding specific integral curves are  periodic with the period of the vector field, and are almost  periodic in the case of an almost periodic vector field.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s0040577922070029", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1327888", 
        "issn": [
          "0040-5779", 
          "1573-9333"
        ], 
        "name": "Theoretical and Mathematical Physics", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "212"
      }
    ], 
    "keywords": [
      "vector fields", 
      "integral curves", 
      "simple dynamics", 
      "periodic vector fields", 
      "finite number", 
      "exponential dichotomy", 
      "dimensional sphere", 
      "unstable separatrices", 
      "substantive example", 
      "diffeomorphisms", 
      "separatrix", 
      "wild embeddings", 
      "field", 
      "dynamics", 
      "embedding", 
      "manifold", 
      "topology", 
      "theory", 
      "curves", 
      "construction", 
      "sphere", 
      "sense", 
      "cases", 
      "idea", 
      "number", 
      "results", 
      "frame", 
      "dichotomy", 
      "suspension", 
      "period", 
      "example"
    ], 
    "name": "Nonautonomous vector fields on : Simple dynamics and wild embedding of separatrices", 
    "pagination": "903-917", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1149789391"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0040577922070029"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0040577922070029", 
      "https://app.dimensions.ai/details/publication/pub.1149789391"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T16:07", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_925.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s0040577922070029"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0040577922070029'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0040577922070029'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0040577922070029'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0040577922070029'


 

This table displays all metadata directly associated to this object as RDF triples.

113 TRIPLES      21 PREDICATES      60 URIs      47 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0040577922070029 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N009fb29382e3405c983d1574d5e44cf1
4 schema:citation sg:pub.10.1007/978-0-387-09819-7
5 sg:pub.10.1007/978-3-319-44847-3
6 sg:pub.10.1007/bf01789010
7 sg:pub.10.1007/bfb0060395
8 sg:pub.10.1023/a:1009508728879
9 schema:datePublished 2022-07-26
10 schema:datePublishedReg 2022-07-26
11 schema:description Abstract We construct new substantive examples of nonautonomous vector fields on a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3$$\end{document}-dimensional sphere having simple dynamics but nontrivial topology. The construction is based on two ideas : the theory of diffeomorphisms with wild separatrix embedding and the construction of a nonautonomous suspension over a diffeomorphism. As a result, we obtain periodic, almost periodic, or even nonrecurrent vector fields that have a finite number of special integral curves possessing exponential dichotomy on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb R$$\end{document} such that among them there is one saddle integral curve (with a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(3,2)$$\end{document} dichotomy type) with a wildly embedded \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2$$\end{document}-dimensional unstable separatrix and a wildly embedded \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3$$\end{document}-dimensional stable manifold. All other integral curves tend to these special integral curves as \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t\to \pm \infty$$\end{document}. We also construct other vector fields having \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\geqslant 2$$\end{document} special saddle integral curves with the tamely embedded \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2$$\end{document}-dimensional unstable separatrices forming mildly wild frames in the sense of Debrunner–Fox. In the case of periodic vector fields, the corresponding specific integral curves are periodic with the period of the vector field, and are almost periodic in the case of an almost periodic vector field.
12 schema:genre article
13 schema:isAccessibleForFree true
14 schema:isPartOf N2d838f6b5fa94576be73a0ab47668a36
15 N3a99efd1df5840deac7c7e7819396e8a
16 sg:journal.1327888
17 schema:keywords cases
18 construction
19 curves
20 dichotomy
21 diffeomorphisms
22 dimensional sphere
23 dynamics
24 embedding
25 example
26 exponential dichotomy
27 field
28 finite number
29 frame
30 idea
31 integral curves
32 manifold
33 number
34 period
35 periodic vector fields
36 results
37 sense
38 separatrix
39 simple dynamics
40 sphere
41 substantive example
42 suspension
43 theory
44 topology
45 unstable separatrices
46 vector fields
47 wild embeddings
48 schema:name Nonautonomous vector fields on : Simple dynamics and wild embedding of separatrices
49 schema:pagination 903-917
50 schema:productId N79c3ae2b8b6841e3ab44d58f6f525de7
51 Nefd60645b64046fdbef8a08340abd7d7
52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1149789391
53 https://doi.org/10.1134/s0040577922070029
54 schema:sdDatePublished 2022-09-02T16:07
55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
56 schema:sdPublisher N362fd3de7b024233a933e324913337d1
57 schema:url https://doi.org/10.1134/s0040577922070029
58 sgo:license sg:explorer/license/
59 sgo:sdDataset articles
60 rdf:type schema:ScholarlyArticle
61 N009fb29382e3405c983d1574d5e44cf1 rdf:first N1567f8e5407745f99fb85bc43440e1f0
62 rdf:rest Nab235ce8de554f20b87733c8a07c719e
63 N0359f9e0dffa47499cf5bdfb902fccb4 schema:affiliation grid-institutes:None
64 schema:familyName Lerman
65 schema:givenName L. M.
66 rdf:type schema:Person
67 N1567f8e5407745f99fb85bc43440e1f0 schema:affiliation grid-institutes:None
68 schema:familyName Grines
69 schema:givenName V. Z.
70 rdf:type schema:Person
71 N2d838f6b5fa94576be73a0ab47668a36 schema:issueNumber 1
72 rdf:type schema:PublicationIssue
73 N362fd3de7b024233a933e324913337d1 schema:name Springer Nature - SN SciGraph project
74 rdf:type schema:Organization
75 N3a99efd1df5840deac7c7e7819396e8a schema:volumeNumber 212
76 rdf:type schema:PublicationVolume
77 N79c3ae2b8b6841e3ab44d58f6f525de7 schema:name dimensions_id
78 schema:value pub.1149789391
79 rdf:type schema:PropertyValue
80 Nab235ce8de554f20b87733c8a07c719e rdf:first N0359f9e0dffa47499cf5bdfb902fccb4
81 rdf:rest rdf:nil
82 Nefd60645b64046fdbef8a08340abd7d7 schema:name doi
83 schema:value 10.1134/s0040577922070029
84 rdf:type schema:PropertyValue
85 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
86 schema:name Mathematical Sciences
87 rdf:type schema:DefinedTerm
88 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
89 schema:name Pure Mathematics
90 rdf:type schema:DefinedTerm
91 sg:journal.1327888 schema:issn 0040-5779
92 1573-9333
93 schema:name Theoretical and Mathematical Physics
94 schema:publisher Pleiades Publishing
95 rdf:type schema:Periodical
96 sg:pub.10.1007/978-0-387-09819-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033203596
97 https://doi.org/10.1007/978-0-387-09819-7
98 rdf:type schema:CreativeWork
99 sg:pub.10.1007/978-3-319-44847-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052680166
100 https://doi.org/10.1007/978-3-319-44847-3
101 rdf:type schema:CreativeWork
102 sg:pub.10.1007/bf01789010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035099051
103 https://doi.org/10.1007/bf01789010
104 rdf:type schema:CreativeWork
105 sg:pub.10.1007/bfb0060395 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018327079
106 https://doi.org/10.1007/bfb0060395
107 rdf:type schema:CreativeWork
108 sg:pub.10.1023/a:1009508728879 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046059860
109 https://doi.org/10.1023/a:1009508728879
110 rdf:type schema:CreativeWork
111 grid-institutes:None schema:alternateName National Research University “Higher School of Economics in Nizhny Novgorod”, Nizhny Novgorod, Russia
112 schema:name National Research University “Higher School of Economics in Nizhny Novgorod”, Nizhny Novgorod, Russia
113 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...