Bernoulli shifts in predator–prey mappings View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2022-07-26

AUTHORS

S. Anastassiou

ABSTRACT

Results providing bounds of the nonwandering set of a mapping, hyperbolicity conditions, and the method of anti-integrability shed light on the global behavior of a discrete system. Following recent works, we use this approach to investigate the behavior of predator–prey systems in dimensions \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3$$\end{document}. Our goal is not only to present results regarding the existence of Bernoulli shifts and hyperbolicity in the phase space but also to emphasize the applicability of this approach in a variety of interesting systems. More... »

PAGES

893-902

References to SciGraph publications

  • 2021-05. Complicated behavior in cubic Hénon maps in THEORETICAL AND MATHEMATICAL PHYSICS
  • 2013. Dynamical Systems, An Introduction in NONE
  • 2004-07. Bounded Nonwandering Sets for Polynomial Mappings in JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS
  • 1979-06. Shift automorphisms in the Hénon mapping in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1134/s0040577922070017

    DOI

    http://dx.doi.org/10.1134/s0040577922070017

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1149787187


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Mathematics, University of West Macedonia, Kastoria, Greece", 
              "id": "http://www.grid.ac/institutes/grid.184212.c", 
              "name": [
                "Department of Mathematics, University of West Macedonia, Kastoria, Greece"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Anastassiou", 
            "givenName": "S.", 
            "id": "sg:person.015531147607.93", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015531147607.93"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-1-4471-4835-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017509591", 
              "https://doi.org/10.1007/978-1-4471-4835-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01221362", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000754556", 
              "https://doi.org/10.1007/bf01221362"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/b:jods.0000034436.39278.37", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026938855", 
              "https://doi.org/10.1023/b:jods.0000034436.39278.37"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s0040577921050032", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1139038845", 
              "https://doi.org/10.1134/s0040577921050032"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2022-07-26", 
        "datePublishedReg": "2022-07-26", 
        "description": "Abstract  Results providing bounds of the nonwandering set of a mapping,  hyperbolicity conditions, and the method of anti-integrability shed  light on the global behavior of a discrete system. Following recent  works, we use this approach to investigate the behavior of  predator\u2013prey systems in dimensions \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$2$$\\end{document} and \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$3$$\\end{document}. Our goal is not  only to present results regarding the existence of Bernoulli shifts  and hyperbolicity in the phase space but also to emphasize the  applicability of this approach in a variety of interesting systems.", 
        "genre": "article", 
        "id": "sg:pub.10.1134/s0040577922070017", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1327888", 
            "issn": [
              "0040-5779", 
              "1573-9333"
            ], 
            "name": "Theoretical and Mathematical Physics", 
            "publisher": "Pleiades Publishing", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "212"
          }
        ], 
        "keywords": [
          "predator\u2013prey system", 
          "shift", 
          "mapping", 
          "interesting system", 
          "results", 
          "shed", 
          "system", 
          "approach", 
          "conditions", 
          "goal", 
          "space", 
          "applicability", 
          "variety", 
          "behavior", 
          "set", 
          "existence", 
          "light", 
          "present results", 
          "method", 
          "work", 
          "dimensions", 
          "global behavior", 
          "bounds", 
          "discrete systems", 
          "hyperbolicity", 
          "phase space", 
          "nonwandering set", 
          "hyperbolicity conditions", 
          "Bernoulli shift"
        ], 
        "name": "Bernoulli shifts in predator\u2013prey mappings", 
        "pagination": "893-902", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1149787187"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1134/s0040577922070017"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1134/s0040577922070017", 
          "https://app.dimensions.ai/details/publication/pub.1149787187"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-10-01T06:49", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_925.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1134/s0040577922070017"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0040577922070017'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0040577922070017'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0040577922070017'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0040577922070017'


     

    This table displays all metadata directly associated to this object as RDF triples.

    102 TRIPLES      21 PREDICATES      57 URIs      45 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1134/s0040577922070017 schema:about anzsrc-for:01
    2 anzsrc-for:02
    3 schema:author Nb99527094ef94f7889a758bbd590dc55
    4 schema:citation sg:pub.10.1007/978-1-4471-4835-7
    5 sg:pub.10.1007/bf01221362
    6 sg:pub.10.1023/b:jods.0000034436.39278.37
    7 sg:pub.10.1134/s0040577921050032
    8 schema:datePublished 2022-07-26
    9 schema:datePublishedReg 2022-07-26
    10 schema:description Abstract Results providing bounds of the nonwandering set of a mapping, hyperbolicity conditions, and the method of anti-integrability shed light on the global behavior of a discrete system. Following recent works, we use this approach to investigate the behavior of predator–prey systems in dimensions \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3$$\end{document}. Our goal is not only to present results regarding the existence of Bernoulli shifts and hyperbolicity in the phase space but also to emphasize the applicability of this approach in a variety of interesting systems.
    11 schema:genre article
    12 schema:isAccessibleForFree false
    13 schema:isPartOf N1671ea65ac0d4267b207daad632e66d6
    14 N62f49eb4572a4586975a9f9bc7b37ee8
    15 sg:journal.1327888
    16 schema:keywords Bernoulli shift
    17 applicability
    18 approach
    19 behavior
    20 bounds
    21 conditions
    22 dimensions
    23 discrete systems
    24 existence
    25 global behavior
    26 goal
    27 hyperbolicity
    28 hyperbolicity conditions
    29 interesting system
    30 light
    31 mapping
    32 method
    33 nonwandering set
    34 phase space
    35 predator–prey system
    36 present results
    37 results
    38 set
    39 shed
    40 shift
    41 space
    42 system
    43 variety
    44 work
    45 schema:name Bernoulli shifts in predator–prey mappings
    46 schema:pagination 893-902
    47 schema:productId N7b65ff65bdab498a8b0cbf91975603ad
    48 N94b601a888fa49ad9a9242dbdfcfd9a5
    49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1149787187
    50 https://doi.org/10.1134/s0040577922070017
    51 schema:sdDatePublished 2022-10-01T06:49
    52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    53 schema:sdPublisher N06f26a112e534f6693a6e0a09c9e6e75
    54 schema:url https://doi.org/10.1134/s0040577922070017
    55 sgo:license sg:explorer/license/
    56 sgo:sdDataset articles
    57 rdf:type schema:ScholarlyArticle
    58 N06f26a112e534f6693a6e0a09c9e6e75 schema:name Springer Nature - SN SciGraph project
    59 rdf:type schema:Organization
    60 N1671ea65ac0d4267b207daad632e66d6 schema:volumeNumber 212
    61 rdf:type schema:PublicationVolume
    62 N62f49eb4572a4586975a9f9bc7b37ee8 schema:issueNumber 1
    63 rdf:type schema:PublicationIssue
    64 N7b65ff65bdab498a8b0cbf91975603ad schema:name doi
    65 schema:value 10.1134/s0040577922070017
    66 rdf:type schema:PropertyValue
    67 N94b601a888fa49ad9a9242dbdfcfd9a5 schema:name dimensions_id
    68 schema:value pub.1149787187
    69 rdf:type schema:PropertyValue
    70 Nb99527094ef94f7889a758bbd590dc55 rdf:first sg:person.015531147607.93
    71 rdf:rest rdf:nil
    72 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    73 schema:name Mathematical Sciences
    74 rdf:type schema:DefinedTerm
    75 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    76 schema:name Physical Sciences
    77 rdf:type schema:DefinedTerm
    78 sg:journal.1327888 schema:issn 0040-5779
    79 1573-9333
    80 schema:name Theoretical and Mathematical Physics
    81 schema:publisher Pleiades Publishing
    82 rdf:type schema:Periodical
    83 sg:person.015531147607.93 schema:affiliation grid-institutes:grid.184212.c
    84 schema:familyName Anastassiou
    85 schema:givenName S.
    86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015531147607.93
    87 rdf:type schema:Person
    88 sg:pub.10.1007/978-1-4471-4835-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017509591
    89 https://doi.org/10.1007/978-1-4471-4835-7
    90 rdf:type schema:CreativeWork
    91 sg:pub.10.1007/bf01221362 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000754556
    92 https://doi.org/10.1007/bf01221362
    93 rdf:type schema:CreativeWork
    94 sg:pub.10.1023/b:jods.0000034436.39278.37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026938855
    95 https://doi.org/10.1023/b:jods.0000034436.39278.37
    96 rdf:type schema:CreativeWork
    97 sg:pub.10.1134/s0040577921050032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1139038845
    98 https://doi.org/10.1134/s0040577921050032
    99 rdf:type schema:CreativeWork
    100 grid-institutes:grid.184212.c schema:alternateName Department of Mathematics, University of West Macedonia, Kastoria, Greece
    101 schema:name Department of Mathematics, University of West Macedonia, Kastoria, Greece
    102 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...