Einstein–Maxwell equations: Solution-generating methods as “coordinate” transformations in the solution spaces View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2022-06-23

AUTHORS

G. A. Alekseev

ABSTRACT

The solution-generating methods discovered for integrable reductions of the Einstein and Einstein–Maxwell field equations (soliton-generating techniques, Bäcklund transformations, HKX transformations, Hauser–Ernst homogeneous Hilbert problem, and other group-theoretical methods) can be described explicitly as transformations of especially defined “coordinates ” in the infinite-dimensional solution spaces of these equations. In general, the role of such “coordinates ” for every local solution can be performed by monodromy data of fundamental solutions of the corresponding spectral problems. However, for large classes of fields, these can be the values of Ernst potentials on the boundaries that consist of degenerate orbits of the space–time isometry group such that space–time geometry and the electromagnetic fields behave regularly near these boundaries. In this paper, transformations of such “coordinates” corresponding to different known solution-generating procedures are described by relatively simple algebraic expressions that do not require any particular choice of the initial (background) solution. Explicit forms of these transformations allow us to find the interrelations between the sets of free parameters that arise in different solution-generating procedures and to determine some physical and geometrical properties of each generating solution even before a detail calculations of all its components. More... »

PAGES

866-892

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0040577922060083

DOI

http://dx.doi.org/10.1134/s0040577922060083

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1148913274


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Steklov Mathematical Institute, Russian Academy of Sciences, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.426543.2", 
          "name": [
            "Steklov Mathematical Institute, Russian Academy of Sciences, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Alekseev", 
        "givenName": "G. A.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1134/s0081543816080010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074209748", 
          "https://doi.org/10.1134/s0081543816080010"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2022-06-23", 
    "datePublishedReg": "2022-06-23", 
    "description": "Abstract  The solution-generating methods discovered for integrable reductions  of the Einstein and Einstein\u2013Maxwell field equations  (soliton-generating techniques, B\u00e4cklund transformations,  HKX transformations, Hauser\u2013Ernst homogeneous Hilbert problem, and  other group-theoretical methods) can be described explicitly  as transformations of especially defined \u201ccoordinates \u201d  in the infinite-dimensional solution spaces of these equations. In  general, the role of such \u201ccoordinates \u201d for every  local solution can be performed by monodromy data of fundamental  solutions of the corresponding spectral problems. However, for  large classes of fields, these can be the values of Ernst potentials  on the boundaries that consist of degenerate orbits of the  space\u2013time isometry group such that space\u2013time geometry and the  electromagnetic fields behave regularly near these boundaries. In  this paper, transformations of such \u201ccoordinates\u201d  corresponding to different known solution-generating procedures are  described by relatively simple algebraic expressions that do not  require any particular choice of the initial  (background) solution. Explicit forms of these  transformations allow us to find the interrelations between the sets  of free parameters that arise in different solution-generating  procedures and to determine some physical and geometrical properties  of each generating solution even before a detail calculations of all  its components.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s0040577922060083", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1327888", 
        "issn": [
          "0040-5779", 
          "1573-9333"
        ], 
        "name": "Theoretical and Mathematical Physics", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "211"
      }
    ], 
    "keywords": [
      "solution-generating method", 
      "Einstein-Maxwell field equations", 
      "solution space", 
      "space-time geometry", 
      "simple algebraic expressions", 
      "corresponding spectral problem", 
      "integrable reductions", 
      "monodromy data", 
      "field equations", 
      "isometry group", 
      "spectral problem", 
      "Ernst potential", 
      "degenerate orbits", 
      "explicit form", 
      "algebraic expressions", 
      "particular choice", 
      "local solutions", 
      "large class", 
      "free parameters", 
      "electromagnetic field", 
      "geometrical properties", 
      "equations", 
      "detail calculation", 
      "coordinates", 
      "solution", 
      "space", 
      "Einstein", 
      "field", 
      "orbit", 
      "geometry", 
      "boundaries", 
      "transformation", 
      "problem", 
      "calculations", 
      "class", 
      "parameters", 
      "set", 
      "properties", 
      "procedure", 
      "form", 
      "choice", 
      "values", 
      "interrelations", 
      "data", 
      "components", 
      "General", 
      "potential", 
      "reduction", 
      "expression", 
      "group", 
      "role", 
      "method", 
      "paper"
    ], 
    "name": "Einstein\u2013Maxwell equations: Solution-generating methods as \u201ccoordinate\u201d transformations in the solution spaces", 
    "pagination": "866-892", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1148913274"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0040577922060083"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0040577922060083", 
      "https://app.dimensions.ai/details/publication/pub.1148913274"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:49", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_925.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s0040577922060083"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0040577922060083'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0040577922060083'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0040577922060083'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0040577922060083'


 

This table displays all metadata directly associated to this object as RDF triples.

113 TRIPLES      21 PREDICATES      78 URIs      69 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0040577922060083 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N28bdad9d9cb8412b88fe90b8a804e883
4 schema:citation sg:pub.10.1134/s0081543816080010
5 schema:datePublished 2022-06-23
6 schema:datePublishedReg 2022-06-23
7 schema:description Abstract The solution-generating methods discovered for integrable reductions of the Einstein and Einstein–Maxwell field equations (soliton-generating techniques, Bäcklund transformations, HKX transformations, Hauser–Ernst homogeneous Hilbert problem, and other group-theoretical methods) can be described explicitly as transformations of especially defined “coordinates ” in the infinite-dimensional solution spaces of these equations. In general, the role of such “coordinates ” for every local solution can be performed by monodromy data of fundamental solutions of the corresponding spectral problems. However, for large classes of fields, these can be the values of Ernst potentials on the boundaries that consist of degenerate orbits of the space–time isometry group such that space–time geometry and the electromagnetic fields behave regularly near these boundaries. In this paper, transformations of such “coordinates” corresponding to different known solution-generating procedures are described by relatively simple algebraic expressions that do not require any particular choice of the initial (background) solution. Explicit forms of these transformations allow us to find the interrelations between the sets of free parameters that arise in different solution-generating procedures and to determine some physical and geometrical properties of each generating solution even before a detail calculations of all its components.
8 schema:genre article
9 schema:isAccessibleForFree false
10 schema:isPartOf N9a86c7467f954fd6bb741bec0d8e08cc
11 Nb17157527f9d436db24ab4f8b9207c00
12 sg:journal.1327888
13 schema:keywords Einstein
14 Einstein-Maxwell field equations
15 Ernst potential
16 General
17 algebraic expressions
18 boundaries
19 calculations
20 choice
21 class
22 components
23 coordinates
24 corresponding spectral problem
25 data
26 degenerate orbits
27 detail calculation
28 electromagnetic field
29 equations
30 explicit form
31 expression
32 field
33 field equations
34 form
35 free parameters
36 geometrical properties
37 geometry
38 group
39 integrable reductions
40 interrelations
41 isometry group
42 large class
43 local solutions
44 method
45 monodromy data
46 orbit
47 paper
48 parameters
49 particular choice
50 potential
51 problem
52 procedure
53 properties
54 reduction
55 role
56 set
57 simple algebraic expressions
58 solution
59 solution space
60 solution-generating method
61 space
62 space-time geometry
63 spectral problem
64 transformation
65 values
66 schema:name Einstein–Maxwell equations: Solution-generating methods as “coordinate” transformations in the solution spaces
67 schema:pagination 866-892
68 schema:productId N7c21d19d643b4ed1af870bfee16863ee
69 Nc67d8202a5a14e9cb7b8739432c8a7dd
70 schema:sameAs https://app.dimensions.ai/details/publication/pub.1148913274
71 https://doi.org/10.1134/s0040577922060083
72 schema:sdDatePublished 2022-10-01T06:49
73 schema:sdLicense https://scigraph.springernature.com/explorer/license/
74 schema:sdPublisher N8941a093dd7a48bd8feb263575e05e9d
75 schema:url https://doi.org/10.1134/s0040577922060083
76 sgo:license sg:explorer/license/
77 sgo:sdDataset articles
78 rdf:type schema:ScholarlyArticle
79 N28bdad9d9cb8412b88fe90b8a804e883 rdf:first Ndc61933326b042bda24bc0fb26c869e3
80 rdf:rest rdf:nil
81 N7c21d19d643b4ed1af870bfee16863ee schema:name dimensions_id
82 schema:value pub.1148913274
83 rdf:type schema:PropertyValue
84 N8941a093dd7a48bd8feb263575e05e9d schema:name Springer Nature - SN SciGraph project
85 rdf:type schema:Organization
86 N9a86c7467f954fd6bb741bec0d8e08cc schema:issueNumber 3
87 rdf:type schema:PublicationIssue
88 Nb17157527f9d436db24ab4f8b9207c00 schema:volumeNumber 211
89 rdf:type schema:PublicationVolume
90 Nc67d8202a5a14e9cb7b8739432c8a7dd schema:name doi
91 schema:value 10.1134/s0040577922060083
92 rdf:type schema:PropertyValue
93 Ndc61933326b042bda24bc0fb26c869e3 schema:affiliation grid-institutes:grid.426543.2
94 schema:familyName Alekseev
95 schema:givenName G. A.
96 rdf:type schema:Person
97 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
98 schema:name Mathematical Sciences
99 rdf:type schema:DefinedTerm
100 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
101 schema:name Pure Mathematics
102 rdf:type schema:DefinedTerm
103 sg:journal.1327888 schema:issn 0040-5779
104 1573-9333
105 schema:name Theoretical and Mathematical Physics
106 schema:publisher Pleiades Publishing
107 rdf:type schema:Periodical
108 sg:pub.10.1134/s0081543816080010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074209748
109 https://doi.org/10.1134/s0081543816080010
110 rdf:type schema:CreativeWork
111 grid-institutes:grid.426543.2 schema:alternateName Steklov Mathematical Institute, Russian Academy of Sciences, Moscow, Russia
112 schema:name Steklov Mathematical Institute, Russian Academy of Sciences, Moscow, Russia
113 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...