Gibbs measures for the HC Blume–Capel model with countably many states on a Cayley tree View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2022-06-23

AUTHORS

N. N. Ganikhodzhaev, U. A. Rozikov, N. M. Khatamov

ABSTRACT

We study the Blume–Capel model with a countable set \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb Z$$\end{document} of spin values and a force \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J\in \mathbb R$$\end{document} of interaction between the nearest neighbors on a Cayley tree of order \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\geq 2$$\end{document}. The following results are obtained. Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta=e^{-J/T}$$\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T>0$$\end{document}, be the temperature. For \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta\geq 1$$\end{document}, there exist no translation invariant Gibbs measures or \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2$$\end{document}-periodic Gibbs measures. For \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<\theta< 1$$\end{document}, we prove the uniqueness of a translation-invariant Gibbs measure. Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Theta=\sum_i\theta^{(k+1)i^2}$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Theta_\mathrm{cr}(k)=k^k/(k-1)^{k+1}$$\end{document}. If \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<\Theta\leq\Theta_\mathrm{cr}$$\end{document}, then there exists exactly one \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2$$\end{document}-periodic Gibbs measure that is translation invariant. For \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Theta>\Theta_\mathrm{cr}$$\end{document}, there exist exactly three \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2$$\end{document}-periodic Gibbs measures, one of which is a translation-invariant Gibbs measure. More... »

PAGES

856-865

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0040577922060071

DOI

http://dx.doi.org/10.1134/s0040577922060071

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1148913273


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Romanovskii Institute for Mathematics, UzAS, Tashkent, Uzbekistan", 
          "id": "http://www.grid.ac/institutes/grid.419209.7", 
          "name": [
            "Romanovskii Institute for Mathematics, UzAS, Tashkent, Uzbekistan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ganikhodzhaev", 
        "givenName": "N. N.", 
        "id": "sg:person.010650336574.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010650336574.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ulugbek National University of Uzbekistan, Tashkent, Uzbekistan", 
          "id": "http://www.grid.ac/institutes/grid.23471.33", 
          "name": [
            "Romanovskii Institute for Mathematics, UzAS, Tashkent, Uzbekistan", 
            "AKFA University, Tashkent, Uzbekistan", 
            "Ulugbek National University of Uzbekistan, Tashkent, Uzbekistan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rozikov", 
        "givenName": "U. A.", 
        "id": "sg:person.014213263324.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014213263324.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Namangan State University, Namangan, Uzbekistan", 
          "id": "http://www.grid.ac/institutes/grid.444646.0", 
          "name": [
            "Romanovskii Institute for Mathematics, UzAS, Tashkent, Uzbekistan", 
            "Namangan State University, Namangan, Uzbekistan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Khatamov", 
        "givenName": "N. M.", 
        "id": "sg:person.012216724546.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012216724546.03"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1134/s0040577920080073", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1130312695", 
          "https://doi.org/10.1134/s0040577920080073"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10955-021-02823-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1141079365", 
          "https://doi.org/10.1007/s10955-021-02823-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-2539-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038602576", 
          "https://doi.org/10.1007/978-1-4757-2539-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00440-020-01021-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1135184370", 
          "https://doi.org/10.1007/s00440-020-01021-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01057870", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000126993", 
          "https://doi.org/10.1007/bf01057870"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02183739", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047938539", 
          "https://doi.org/10.1007/bf02183739"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0040577921030090", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1139032409", 
          "https://doi.org/10.1134/s0040577921030090"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11253-020-01804-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1131885691", 
          "https://doi.org/10.1007/s11253-020-01804-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11005-005-0032-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038943181", 
          "https://doi.org/10.1007/s11005-005-0032-8"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2022-06-23", 
    "datePublishedReg": "2022-06-23", 
    "description": "Abstract  We study the Blume\u2013Capel model with a countable set \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\mathbb Z$$\\end{document} of  spin values and a force \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$J\\in \\mathbb R$$\\end{document} of interaction between the  nearest neighbors on a Cayley tree of order \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$k\\geq 2$$\\end{document}. The following  results are obtained. Let \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\theta=e^{-J/T}$$\\end{document}, \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$T>0$$\\end{document}, be the  temperature. For \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\theta\\geq 1$$\\end{document}, there exist no translation  invariant Gibbs measures or \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$2$$\\end{document}-periodic Gibbs measures. For  \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$0<\\theta< 1$$\\end{document}, we prove the uniqueness of a translation-invariant Gibbs measure. Let  \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\Theta=\\sum_i\\theta^{(k+1)i^2}$$\\end{document} and  \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\Theta_\\mathrm{cr}(k)=k^k/(k-1)^{k+1}$$\\end{document}. If  \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$0<\\Theta\\leq\\Theta_\\mathrm{cr}$$\\end{document}, then there exists exactly one  \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$2$$\\end{document}-periodic Gibbs measure that is translation invariant. For  \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\Theta>\\Theta_\\mathrm{cr}$$\\end{document}, there exist exactly three \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$2$$\\end{document}-periodic  Gibbs measures, one of which is a translation-invariant Gibbs  measure.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s0040577922060071", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1327888", 
        "issn": [
          "0040-5779", 
          "1573-9333"
        ], 
        "name": "Theoretical and Mathematical Physics", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "211"
      }
    ], 
    "keywords": [
      "Blume-Capel model", 
      "Cayley tree", 
      "invariant Gibbs measures", 
      "Gibbs measures", 
      "model", 
      "countable set", 
      "set", 
      "spin values", 
      "values", 
      "force", 
      "interaction", 
      "nearest neighbors", 
      "neighbors", 
      "trees", 
      "order", 
      "results", 
      "temperature", 
      "translation", 
      "measures", 
      "periodic Gibbs measures", 
      "uniqueness", 
      "translation-invariant Gibbs measures", 
      "translation invariant", 
      "invariants", 
      "Gibbs", 
      "state"
    ], 
    "name": "Gibbs measures for the HC Blume\u2013Capel model with countably many states on a Cayley tree", 
    "pagination": "856-865", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1148913273"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0040577922060071"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0040577922060071", 
      "https://app.dimensions.ai/details/publication/pub.1148913273"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-11-24T21:09", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_947.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s0040577922060071"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0040577922060071'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0040577922060071'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0040577922060071'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0040577922060071'


 

This table displays all metadata directly associated to this object as RDF triples.

142 TRIPLES      21 PREDICATES      59 URIs      42 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0040577922060071 schema:about anzsrc-for:01
2 anzsrc-for:02
3 schema:author N2314b9afaabe42ec985e870b123ef48d
4 schema:citation sg:pub.10.1007/978-1-4757-2539-1
5 sg:pub.10.1007/bf01057870
6 sg:pub.10.1007/bf02183739
7 sg:pub.10.1007/s00440-020-01021-5
8 sg:pub.10.1007/s10955-021-02823-0
9 sg:pub.10.1007/s11005-005-0032-8
10 sg:pub.10.1007/s11253-020-01804-y
11 sg:pub.10.1134/s0040577920080073
12 sg:pub.10.1134/s0040577921030090
13 schema:datePublished 2022-06-23
14 schema:datePublishedReg 2022-06-23
15 schema:description Abstract We study the Blume–Capel model with a countable set \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb Z$$\end{document} of spin values and a force \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J\in \mathbb R$$\end{document} of interaction between the nearest neighbors on a Cayley tree of order \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\geq 2$$\end{document}. The following results are obtained. Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta=e^{-J/T}$$\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T>0$$\end{document}, be the temperature. For \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta\geq 1$$\end{document}, there exist no translation invariant Gibbs measures or \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2$$\end{document}-periodic Gibbs measures. For \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<\theta< 1$$\end{document}, we prove the uniqueness of a translation-invariant Gibbs measure. Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Theta=\sum_i\theta^{(k+1)i^2}$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Theta_\mathrm{cr}(k)=k^k/(k-1)^{k+1}$$\end{document}. If \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<\Theta\leq\Theta_\mathrm{cr}$$\end{document}, then there exists exactly one \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2$$\end{document}-periodic Gibbs measure that is translation invariant. For \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Theta>\Theta_\mathrm{cr}$$\end{document}, there exist exactly three \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2$$\end{document}-periodic Gibbs measures, one of which is a translation-invariant Gibbs measure.
16 schema:genre article
17 schema:isAccessibleForFree false
18 schema:isPartOf Nb47afbba22db44f78b93a0deac134d30
19 Ne1cb7daaebca4c00b8e378ab5f413773
20 sg:journal.1327888
21 schema:keywords Blume-Capel model
22 Cayley tree
23 Gibbs
24 Gibbs measures
25 countable set
26 force
27 interaction
28 invariant Gibbs measures
29 invariants
30 measures
31 model
32 nearest neighbors
33 neighbors
34 order
35 periodic Gibbs measures
36 results
37 set
38 spin values
39 state
40 temperature
41 translation
42 translation invariant
43 translation-invariant Gibbs measures
44 trees
45 uniqueness
46 values
47 schema:name Gibbs measures for the HC Blume–Capel model with countably many states on a Cayley tree
48 schema:pagination 856-865
49 schema:productId N6f88922c3c5b4e7886d43307079aedcb
50 Nc185f7c0602447f283338dc4968f285e
51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1148913273
52 https://doi.org/10.1134/s0040577922060071
53 schema:sdDatePublished 2022-11-24T21:09
54 schema:sdLicense https://scigraph.springernature.com/explorer/license/
55 schema:sdPublisher Neb0a9f0f3aef4f91b6d0387b42ba10eb
56 schema:url https://doi.org/10.1134/s0040577922060071
57 sgo:license sg:explorer/license/
58 sgo:sdDataset articles
59 rdf:type schema:ScholarlyArticle
60 N2314b9afaabe42ec985e870b123ef48d rdf:first sg:person.010650336574.13
61 rdf:rest N72ea45b7182941be8a4cbab3e4f060b3
62 N5229f904b4b94e37b64043dd49a8b95b rdf:first sg:person.012216724546.03
63 rdf:rest rdf:nil
64 N6f88922c3c5b4e7886d43307079aedcb schema:name doi
65 schema:value 10.1134/s0040577922060071
66 rdf:type schema:PropertyValue
67 N72ea45b7182941be8a4cbab3e4f060b3 rdf:first sg:person.014213263324.92
68 rdf:rest N5229f904b4b94e37b64043dd49a8b95b
69 Nb47afbba22db44f78b93a0deac134d30 schema:issueNumber 3
70 rdf:type schema:PublicationIssue
71 Nc185f7c0602447f283338dc4968f285e schema:name dimensions_id
72 schema:value pub.1148913273
73 rdf:type schema:PropertyValue
74 Ne1cb7daaebca4c00b8e378ab5f413773 schema:volumeNumber 211
75 rdf:type schema:PublicationVolume
76 Neb0a9f0f3aef4f91b6d0387b42ba10eb schema:name Springer Nature - SN SciGraph project
77 rdf:type schema:Organization
78 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
79 schema:name Mathematical Sciences
80 rdf:type schema:DefinedTerm
81 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
82 schema:name Physical Sciences
83 rdf:type schema:DefinedTerm
84 sg:journal.1327888 schema:issn 0040-5779
85 1573-9333
86 schema:name Theoretical and Mathematical Physics
87 schema:publisher Pleiades Publishing
88 rdf:type schema:Periodical
89 sg:person.010650336574.13 schema:affiliation grid-institutes:grid.419209.7
90 schema:familyName Ganikhodzhaev
91 schema:givenName N. N.
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010650336574.13
93 rdf:type schema:Person
94 sg:person.012216724546.03 schema:affiliation grid-institutes:grid.444646.0
95 schema:familyName Khatamov
96 schema:givenName N. M.
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012216724546.03
98 rdf:type schema:Person
99 sg:person.014213263324.92 schema:affiliation grid-institutes:grid.23471.33
100 schema:familyName Rozikov
101 schema:givenName U. A.
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014213263324.92
103 rdf:type schema:Person
104 sg:pub.10.1007/978-1-4757-2539-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038602576
105 https://doi.org/10.1007/978-1-4757-2539-1
106 rdf:type schema:CreativeWork
107 sg:pub.10.1007/bf01057870 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000126993
108 https://doi.org/10.1007/bf01057870
109 rdf:type schema:CreativeWork
110 sg:pub.10.1007/bf02183739 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047938539
111 https://doi.org/10.1007/bf02183739
112 rdf:type schema:CreativeWork
113 sg:pub.10.1007/s00440-020-01021-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1135184370
114 https://doi.org/10.1007/s00440-020-01021-5
115 rdf:type schema:CreativeWork
116 sg:pub.10.1007/s10955-021-02823-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1141079365
117 https://doi.org/10.1007/s10955-021-02823-0
118 rdf:type schema:CreativeWork
119 sg:pub.10.1007/s11005-005-0032-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038943181
120 https://doi.org/10.1007/s11005-005-0032-8
121 rdf:type schema:CreativeWork
122 sg:pub.10.1007/s11253-020-01804-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1131885691
123 https://doi.org/10.1007/s11253-020-01804-y
124 rdf:type schema:CreativeWork
125 sg:pub.10.1134/s0040577920080073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1130312695
126 https://doi.org/10.1134/s0040577920080073
127 rdf:type schema:CreativeWork
128 sg:pub.10.1134/s0040577921030090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1139032409
129 https://doi.org/10.1134/s0040577921030090
130 rdf:type schema:CreativeWork
131 grid-institutes:grid.23471.33 schema:alternateName Ulugbek National University of Uzbekistan, Tashkent, Uzbekistan
132 schema:name AKFA University, Tashkent, Uzbekistan
133 Romanovskii Institute for Mathematics, UzAS, Tashkent, Uzbekistan
134 Ulugbek National University of Uzbekistan, Tashkent, Uzbekistan
135 rdf:type schema:Organization
136 grid-institutes:grid.419209.7 schema:alternateName Romanovskii Institute for Mathematics, UzAS, Tashkent, Uzbekistan
137 schema:name Romanovskii Institute for Mathematics, UzAS, Tashkent, Uzbekistan
138 rdf:type schema:Organization
139 grid-institutes:grid.444646.0 schema:alternateName Namangan State University, Namangan, Uzbekistan
140 schema:name Namangan State University, Namangan, Uzbekistan
141 Romanovskii Institute for Mathematics, UzAS, Tashkent, Uzbekistan
142 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...