Classification of solutions of the generalized mixed nonlinear Schrödinger equation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2022-06-23

AUTHORS

Deqin Qiu, Yongshuai Zhang

ABSTRACT

We construct a generalized Darboux transformation for a generalized mixed nonlinear Schrödinger equation and consider a complete reduction classification of parameters and eigenfunctions of the two-, three-, and four-fold generalized Darboux transformations. According to these different types of reductions, several solutions of the generalized mixed nonlinear Schrödinger equation are found, including a soliton, a quasirational soliton, and a periodic soliton. Finally, a classification corresponding to these reductions is given. More... »

PAGES

838-855

References to SciGraph publications

  • 2015-04-30. Darboux Transformation of the Second-Type Derivative Nonlinear Schrödinger Equation in LETTERS IN MATHEMATICAL PHYSICS
  • 1994. Positons: A New Concept in the Theory of Nonlinear Waves in NONLINEAR COHERENT STRUCTURES IN PHYSICS AND BIOLOGY
  • 1979-05. Darboux transformation and explicit solutions of the Kadomtcev-Petviaschvily equation, depending on functional parameters in LETTERS IN MATHEMATICAL PHYSICS
  • 2005. Darboux Transformations in Integrable Systems, Theory and their Applications to Geometry in NONE
  • 2006-12. Determinant representation of Darboux transformation for the AKNS system in SCIENCE CHINA MATHEMATICS
  • 1991. Darboux Transformations and Solitons in NONE
  • 2002-04. Positons: Slowly Decreasing Analogues of Solitons in THEORETICAL AND MATHEMATICAL PHYSICS
  • 1987-04. On the Darboux matrices of Bäcklund transformations for AKNS systems in LETTERS IN MATHEMATICAL PHYSICS
  • 1995-10. Darboux transformations for supersymmetric korteweg-de vries equations in LETTERS IN MATHEMATICAL PHYSICS
  • 1997-01. Darboux Transformations for a Lax Integrable System in 2n Dimensions in LETTERS IN MATHEMATICAL PHYSICS
  • 1979-05. Darboux transformation and the explicit solutions of differential-difference and difference-difference evolution equations I in LETTERS IN MATHEMATICAL PHYSICS
  • 1979-11. Some comments on the rational solutions of the Zakharov-Schabat equations in LETTERS IN MATHEMATICAL PHYSICS
  • 2020-07-15. Rogue Waves in the Generalized Derivative Nonlinear Schrödinger Equations in JOURNAL OF NONLINEAR SCIENCE
  • 1979-09. Differential-difference evolution equations. II (Darboux transformation for the Toda lattice) in LETTERS IN MATHEMATICAL PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1134/s004057792206006x

    DOI

    http://dx.doi.org/10.1134/s004057792206006x

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1148913272


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Mathematics, School of Science, China University of Mining and Technology, Beijing, China", 
              "id": "http://www.grid.ac/institutes/grid.411510.0", 
              "name": [
                "Department of Mathematics, School of Science, China University of Mining and Technology, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Qiu", 
            "givenName": "Deqin", 
            "id": "sg:person.015300507613.38", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015300507613.38"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Science, Zhejiang University of Science and Technology, Hangzhou, Zhejiang, China", 
              "id": "http://www.grid.ac/institutes/grid.469322.8", 
              "name": [
                "School of Science, Zhejiang University of Science and Technology, Hangzhou, Zhejiang, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Yongshuai", 
            "id": "sg:person.016353656453.19", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016353656453.19"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/1-4020-3088-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035610243", 
              "https://doi.org/10.1007/1-4020-3088-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-662-00922-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109712068", 
              "https://doi.org/10.1007/978-3-662-00922-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00332-020-09643-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1129386530", 
              "https://doi.org/10.1007/s00332-020-09643-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11005-997-3049-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051999760", 
              "https://doi.org/10.1007/s11005-997-3049-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11005-015-0758-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012681456", 
              "https://doi.org/10.1007/s11005-015-0758-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00397217", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050931799", 
              "https://doi.org/10.1007/bf00397217"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00401932", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017317935", 
              "https://doi.org/10.1007/bf00401932"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00405296", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014493871", 
              "https://doi.org/10.1007/bf00405296"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00405295", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046951382", 
              "https://doi.org/10.1007/bf00405295"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4899-1343-2_39", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024302491", 
              "https://doi.org/10.1007/978-1-4899-1343-2_39"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00423444", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017645081", 
              "https://doi.org/10.1007/bf00423444"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1015149618529", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041892784", 
              "https://doi.org/10.1023/a:1015149618529"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11425-006-2025-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025285457", 
              "https://doi.org/10.1007/s11425-006-2025-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00750761", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003287342", 
              "https://doi.org/10.1007/bf00750761"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2022-06-23", 
        "datePublishedReg": "2022-06-23", 
        "description": "Abstract  We construct a generalized Darboux transformation for a generalized  mixed nonlinear Schr\u00f6dinger equation and consider a complete  reduction classification of parameters and eigenfunctions of the  two-, three-, and four-fold generalized Darboux  transformations. According to these different types of reductions,  several solutions of the generalized mixed nonlinear Schr\u00f6dinger  equation are found, including a soliton, a quasirational soliton,  and a periodic soliton. Finally, a classification corresponding to  these reductions is given.", 
        "genre": "article", 
        "id": "sg:pub.10.1134/s004057792206006x", 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.8894674", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.8897900", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.8892600", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1327888", 
            "issn": [
              "0040-5779", 
              "1573-9333"
            ], 
            "name": "Theoretical and Mathematical Physics", 
            "publisher": "Pleiades Publishing", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "211"
          }
        ], 
        "keywords": [
          "Schr\u00f6dinger equation", 
          "classification of solutions", 
          "Darboux transformation", 
          "periodic soliton", 
          "solitons", 
          "equations", 
          "Darboux", 
          "Schr\u00f6dinger", 
          "eigenfunctions", 
          "solution", 
          "transformation", 
          "parameters", 
          "different types", 
          "classification", 
          "types", 
          "four-fold", 
          "reduction"
        ], 
        "name": "Classification of solutions of the generalized mixed nonlinear Schr\u00f6dinger equation", 
        "pagination": "838-855", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1148913272"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1134/s004057792206006x"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1134/s004057792206006x", 
          "https://app.dimensions.ai/details/publication/pub.1148913272"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-10-01T06:51", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_948.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1134/s004057792206006x"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s004057792206006x'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s004057792206006x'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s004057792206006x'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s004057792206006x'


     

    This table displays all metadata directly associated to this object as RDF triples.

    146 TRIPLES      21 PREDICATES      55 URIs      33 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1134/s004057792206006x schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author Nd477ea7c3ee84272ba16731359ac7aab
    4 schema:citation sg:pub.10.1007/1-4020-3088-6
    5 sg:pub.10.1007/978-1-4899-1343-2_39
    6 sg:pub.10.1007/978-3-662-00922-2
    7 sg:pub.10.1007/bf00397217
    8 sg:pub.10.1007/bf00401932
    9 sg:pub.10.1007/bf00405295
    10 sg:pub.10.1007/bf00405296
    11 sg:pub.10.1007/bf00423444
    12 sg:pub.10.1007/bf00750761
    13 sg:pub.10.1007/s00332-020-09643-8
    14 sg:pub.10.1007/s11005-015-0758-x
    15 sg:pub.10.1007/s11005-997-3049-3
    16 sg:pub.10.1007/s11425-006-2025-1
    17 sg:pub.10.1023/a:1015149618529
    18 schema:datePublished 2022-06-23
    19 schema:datePublishedReg 2022-06-23
    20 schema:description Abstract We construct a generalized Darboux transformation for a generalized mixed nonlinear Schrödinger equation and consider a complete reduction classification of parameters and eigenfunctions of the two-, three-, and four-fold generalized Darboux transformations. According to these different types of reductions, several solutions of the generalized mixed nonlinear Schrödinger equation are found, including a soliton, a quasirational soliton, and a periodic soliton. Finally, a classification corresponding to these reductions is given.
    21 schema:genre article
    22 schema:isAccessibleForFree false
    23 schema:isPartOf N1b050b935100497ea1acd71a137509a5
    24 N3497b900b00940f08a9842238f6c6e77
    25 sg:journal.1327888
    26 schema:keywords Darboux
    27 Darboux transformation
    28 Schrödinger
    29 Schrödinger equation
    30 classification
    31 classification of solutions
    32 different types
    33 eigenfunctions
    34 equations
    35 four-fold
    36 parameters
    37 periodic soliton
    38 reduction
    39 solitons
    40 solution
    41 transformation
    42 types
    43 schema:name Classification of solutions of the generalized mixed nonlinear Schrödinger equation
    44 schema:pagination 838-855
    45 schema:productId N05f17645fcbb4e6b91d7273debdf87f4
    46 N504e2b8bc09d49c39c699655696d4e7d
    47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1148913272
    48 https://doi.org/10.1134/s004057792206006x
    49 schema:sdDatePublished 2022-10-01T06:51
    50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    51 schema:sdPublisher N9177407b2e9a4b89b14174e13e572cbe
    52 schema:url https://doi.org/10.1134/s004057792206006x
    53 sgo:license sg:explorer/license/
    54 sgo:sdDataset articles
    55 rdf:type schema:ScholarlyArticle
    56 N05f17645fcbb4e6b91d7273debdf87f4 schema:name doi
    57 schema:value 10.1134/s004057792206006x
    58 rdf:type schema:PropertyValue
    59 N147ad6e26e8c47d79a3e64c3687be7a4 rdf:first sg:person.016353656453.19
    60 rdf:rest rdf:nil
    61 N1b050b935100497ea1acd71a137509a5 schema:volumeNumber 211
    62 rdf:type schema:PublicationVolume
    63 N3497b900b00940f08a9842238f6c6e77 schema:issueNumber 3
    64 rdf:type schema:PublicationIssue
    65 N504e2b8bc09d49c39c699655696d4e7d schema:name dimensions_id
    66 schema:value pub.1148913272
    67 rdf:type schema:PropertyValue
    68 N9177407b2e9a4b89b14174e13e572cbe schema:name Springer Nature - SN SciGraph project
    69 rdf:type schema:Organization
    70 Nd477ea7c3ee84272ba16731359ac7aab rdf:first sg:person.015300507613.38
    71 rdf:rest N147ad6e26e8c47d79a3e64c3687be7a4
    72 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    73 schema:name Mathematical Sciences
    74 rdf:type schema:DefinedTerm
    75 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    76 schema:name Pure Mathematics
    77 rdf:type schema:DefinedTerm
    78 sg:grant.8892600 http://pending.schema.org/fundedItem sg:pub.10.1134/s004057792206006x
    79 rdf:type schema:MonetaryGrant
    80 sg:grant.8894674 http://pending.schema.org/fundedItem sg:pub.10.1134/s004057792206006x
    81 rdf:type schema:MonetaryGrant
    82 sg:grant.8897900 http://pending.schema.org/fundedItem sg:pub.10.1134/s004057792206006x
    83 rdf:type schema:MonetaryGrant
    84 sg:journal.1327888 schema:issn 0040-5779
    85 1573-9333
    86 schema:name Theoretical and Mathematical Physics
    87 schema:publisher Pleiades Publishing
    88 rdf:type schema:Periodical
    89 sg:person.015300507613.38 schema:affiliation grid-institutes:grid.411510.0
    90 schema:familyName Qiu
    91 schema:givenName Deqin
    92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015300507613.38
    93 rdf:type schema:Person
    94 sg:person.016353656453.19 schema:affiliation grid-institutes:grid.469322.8
    95 schema:familyName Zhang
    96 schema:givenName Yongshuai
    97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016353656453.19
    98 rdf:type schema:Person
    99 sg:pub.10.1007/1-4020-3088-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035610243
    100 https://doi.org/10.1007/1-4020-3088-6
    101 rdf:type schema:CreativeWork
    102 sg:pub.10.1007/978-1-4899-1343-2_39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024302491
    103 https://doi.org/10.1007/978-1-4899-1343-2_39
    104 rdf:type schema:CreativeWork
    105 sg:pub.10.1007/978-3-662-00922-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109712068
    106 https://doi.org/10.1007/978-3-662-00922-2
    107 rdf:type schema:CreativeWork
    108 sg:pub.10.1007/bf00397217 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050931799
    109 https://doi.org/10.1007/bf00397217
    110 rdf:type schema:CreativeWork
    111 sg:pub.10.1007/bf00401932 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017317935
    112 https://doi.org/10.1007/bf00401932
    113 rdf:type schema:CreativeWork
    114 sg:pub.10.1007/bf00405295 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046951382
    115 https://doi.org/10.1007/bf00405295
    116 rdf:type schema:CreativeWork
    117 sg:pub.10.1007/bf00405296 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014493871
    118 https://doi.org/10.1007/bf00405296
    119 rdf:type schema:CreativeWork
    120 sg:pub.10.1007/bf00423444 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017645081
    121 https://doi.org/10.1007/bf00423444
    122 rdf:type schema:CreativeWork
    123 sg:pub.10.1007/bf00750761 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003287342
    124 https://doi.org/10.1007/bf00750761
    125 rdf:type schema:CreativeWork
    126 sg:pub.10.1007/s00332-020-09643-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1129386530
    127 https://doi.org/10.1007/s00332-020-09643-8
    128 rdf:type schema:CreativeWork
    129 sg:pub.10.1007/s11005-015-0758-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1012681456
    130 https://doi.org/10.1007/s11005-015-0758-x
    131 rdf:type schema:CreativeWork
    132 sg:pub.10.1007/s11005-997-3049-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051999760
    133 https://doi.org/10.1007/s11005-997-3049-3
    134 rdf:type schema:CreativeWork
    135 sg:pub.10.1007/s11425-006-2025-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025285457
    136 https://doi.org/10.1007/s11425-006-2025-1
    137 rdf:type schema:CreativeWork
    138 sg:pub.10.1023/a:1015149618529 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041892784
    139 https://doi.org/10.1023/a:1015149618529
    140 rdf:type schema:CreativeWork
    141 grid-institutes:grid.411510.0 schema:alternateName Department of Mathematics, School of Science, China University of Mining and Technology, Beijing, China
    142 schema:name Department of Mathematics, School of Science, China University of Mining and Technology, Beijing, China
    143 rdf:type schema:Organization
    144 grid-institutes:grid.469322.8 schema:alternateName School of Science, Zhejiang University of Science and Technology, Hangzhou, Zhejiang, China
    145 schema:name School of Science, Zhejiang University of Science and Technology, Hangzhou, Zhejiang, China
    146 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...