Approximate analytic solution of the Logunov–Tavkhelidze equation for a one-dimensional oscillator potential in the relativistic configuration representation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2022-06-23

AUTHORS

Yu. A. Grishechkin, V. N. Kapshai

ABSTRACT

We construct approximate analytic solutions of the Logunov–Tavkhelidze equation in the case of a potential that, in the one-dimensional relativistic configuration representation, has the form analogous to the potential of the nonrelativistic harmonic oscillator in the coordinate representation. The wave functions are obtained in both the momentum and relativistic configuration representations. The approximate values of the energy of the relativistic harmonic oscillator are the roots of transcendental equations. The wave functions in the relativistic configuration representation have additional zeros in comparison with the wave functions of the corresponding states of the nonrelativistic harmonic oscillator in the coordinate representation. More... »

PAGES

826-837

References to SciGraph publications

  • 1988-11. On the spectrum of a relativistic bound system in a quasipotential well with barrier in THEORETICAL AND MATHEMATICAL PHYSICS
  • 2002-01. One-Dimensional Relativistic Problems on the Bound States and Degradation for a Superposition of Two δ Potentials in RUSSIAN PHYSICS JOURNAL
  • 1973. Three-Dimensional Formulation of the Relativistic Two-Body Problem in PARTICLES AND NUCLEI
  • 1980-07. Quasipotential models of a relativistic oscillator in THEORETICAL AND MATHEMATICAL PHYSICS
  • 2018-12-26. Solution of the Logunov–Tavkhelidze Equation for the Three-Dimensional Oscillator Potential in the Relativistic Configuration Representation in RUSSIAN PHYSICS JOURNAL
  • 1987-08. Exact solution of a quasipotential equation by contour integration in THEORETICAL AND MATHEMATICAL PHYSICS
  • 2009-06. Relativistic equations with some point potentials in RUSSIAN PHYSICS JOURNAL
  • 2021-09-23. Relativistic linear oscillator under the action of a constant external force. Wave functions and dynamical symmetry group in THEORETICAL AND MATHEMATICAL PHYSICS
  • 1988-05. Approximate analytic solution of a quasipotential equation in THEORETICAL AND MATHEMATICAL PHYSICS
  • 1986-10. Exact solution of quasipotential equations of general form with chromodynamic interaction in THEORETICAL AND MATHEMATICAL PHYSICS
  • 1982-10. Exact solution of covariant two-particle one-time equation with superposition of one-boson exchange quasipotentials in THEORETICAL AND MATHEMATICAL PHYSICS
  • 2013-08-16. Numerical solution of relativistic problems on bound states of systems of two spinless particles in RUSSIAN PHYSICS JOURNAL
  • 1963-07. Quasi-optical approach in quantum field theory in IL NUOVO CIMENTO (1955-1965)
  • 1981-07. Reduction of quasipotential equations to Sturm-Liouville problems and the comparison equation method in THEORETICAL AND MATHEMATICAL PHYSICS
  • 2002. Integral Equations of Relativistic Bound State Theory and Sturm-Liouville Problem in OPERATOR METHODS IN ORDINARY AND PARTIAL DIFFERENTIAL EQUATIONS
  • 1983-06. On a class of exact solutions of quasipotential equations in THEORETICAL AND MATHEMATICAL PHYSICS
  • 2017-05-08. Solution of Relativistic Two-Particle Equations with Arbitrary Orbital Angular Momentum in RUSSIAN PHYSICS JOURNAL
  • 1983-05. Exact solutions of quasipotential equations for the Coulomb potential and a linear confining potential in THEORETICAL AND MATHEMATICAL PHYSICS
  • 2001-10. -Expansion for Bound States Described by the Relativistic Three-Dimensional Two-Particle Quasi-Potential Equation in THEORETICAL AND MATHEMATICAL PHYSICS
  • 1997-07. Analog of the frobenius method for solving homogeneous integral equations of the quasi-potential approach in a relativistic configurational representation in RUSSIAN PHYSICS JOURNAL
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1134/s0040577922060058

    DOI

    http://dx.doi.org/10.1134/s0040577922060058

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1148913271


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Francisk Skorina Gomel State University, Gomel, Belarus", 
              "id": "http://www.grid.ac/institutes/grid.440509.c", 
              "name": [
                "Francisk Skorina Gomel State University, Gomel, Belarus"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Grishechkin", 
            "givenName": "Yu. A.", 
            "id": "sg:person.013261062233.58", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013261062233.58"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Francisk Skorina Gomel State University, Gomel, Belarus", 
              "id": "http://www.grid.ac/institutes/grid.440509.c", 
              "name": [
                "Francisk Skorina Gomel State University, Gomel, Belarus"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kapshai", 
            "givenName": "V. N.", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf01037674", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028638385", 
              "https://doi.org/10.1007/bf01037674"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1016098816502", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013007200", 
              "https://doi.org/10.1023/a:1016098816502"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11182-018-1582-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1110908684", 
              "https://doi.org/10.1007/s11182-018-1582-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01037987", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051705699", 
              "https://doi.org/10.1007/bf01037987"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s0040577921090087", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1141331728", 
              "https://doi.org/10.1134/s0040577921090087"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-0348-8219-4_15", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016717991", 
              "https://doi.org/10.1007/978-3-0348-8219-4_15"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11182-013-0053-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040942721", 
              "https://doi.org/10.1007/s11182-013-0053-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02514953", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049031795", 
              "https://doi.org/10.1007/bf02514953"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01038009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002410377", 
              "https://doi.org/10.1007/bf01038009"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01015165", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006601212", 
              "https://doi.org/10.1007/bf01015165"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4684-7550-0_3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008631404", 
              "https://doi.org/10.1007/978-1-4684-7550-0_3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01017106", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038294364", 
              "https://doi.org/10.1007/bf01017106"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01014791", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003762830", 
              "https://doi.org/10.1007/bf01014791"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1012423629038", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019216122", 
              "https://doi.org/10.1023/a:1012423629038"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01016385", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000193679", 
              "https://doi.org/10.1007/bf01016385"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02750359", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000164147", 
              "https://doi.org/10.1007/bf02750359"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11182-017-1041-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085209978", 
              "https://doi.org/10.1007/s11182-017-1041-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01017486", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000473411", 
              "https://doi.org/10.1007/bf01017486"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01015807", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020042156", 
              "https://doi.org/10.1007/bf01015807"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11182-009-9275-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037426642", 
              "https://doi.org/10.1007/s11182-009-9275-7"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2022-06-23", 
        "datePublishedReg": "2022-06-23", 
        "description": "Abstract  We construct approximate analytic solutions of the  Logunov\u2013Tavkhelidze equation in the case of a potential that, in  the one-dimensional relativistic configuration representation, has  the form analogous to the potential of the nonrelativistic harmonic  oscillator in the coordinate representation. The wave functions are  obtained in both the momentum and relativistic configuration  representations. The approximate values of the energy of the  relativistic harmonic oscillator are the roots of transcendental  equations. The wave functions in the relativistic configuration  representation have additional zeros in comparison with the wave  functions of the corresponding states of the nonrelativistic  harmonic oscillator in the coordinate representation.", 
        "genre": "article", 
        "id": "sg:pub.10.1134/s0040577922060058", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1327888", 
            "issn": [
              "0040-5779", 
              "1573-9333"
            ], 
            "name": "Theoretical and Mathematical Physics", 
            "publisher": "Pleiades Publishing", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "211"
          }
        ], 
        "keywords": [
          "approximate analytic solution", 
          "analytic solution", 
          "harmonic oscillator", 
          "coordinate representation", 
          "wave functions", 
          "relativistic configuration", 
          "Logunov-Tavkhelidze equation", 
          "equations", 
          "relativistic harmonic oscillator", 
          "additional zeros", 
          "oscillator potential", 
          "configuration representation", 
          "approximate values", 
          "oscillator", 
          "corresponding states", 
          "representation", 
          "solution", 
          "nonrelativistic", 
          "zeros", 
          "function", 
          "momentum", 
          "waves", 
          "harmonics", 
          "configuration", 
          "relativistic configuration representation", 
          "energy", 
          "cases", 
          "form", 
          "state", 
          "potential", 
          "values", 
          "comparison", 
          "roots"
        ], 
        "name": "Approximate analytic solution of the Logunov\u2013Tavkhelidze equation for a one-dimensional oscillator potential in the relativistic configuration representation", 
        "pagination": "826-837", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1148913271"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1134/s0040577922060058"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1134/s0040577922060058", 
          "https://app.dimensions.ai/details/publication/pub.1148913271"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-10-01T06:50", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_942.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1134/s0040577922060058"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0040577922060058'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0040577922060058'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0040577922060058'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0040577922060058'


     

    This table displays all metadata directly associated to this object as RDF triples.

    176 TRIPLES      21 PREDICATES      77 URIs      49 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1134/s0040577922060058 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N4e66c95cbe4a492ab5904f8be7fe16e6
    4 schema:citation sg:pub.10.1007/978-1-4684-7550-0_3
    5 sg:pub.10.1007/978-3-0348-8219-4_15
    6 sg:pub.10.1007/bf01014791
    7 sg:pub.10.1007/bf01015165
    8 sg:pub.10.1007/bf01015807
    9 sg:pub.10.1007/bf01016385
    10 sg:pub.10.1007/bf01017106
    11 sg:pub.10.1007/bf01017486
    12 sg:pub.10.1007/bf01037674
    13 sg:pub.10.1007/bf01037987
    14 sg:pub.10.1007/bf01038009
    15 sg:pub.10.1007/bf02514953
    16 sg:pub.10.1007/bf02750359
    17 sg:pub.10.1007/s11182-009-9275-7
    18 sg:pub.10.1007/s11182-013-0053-1
    19 sg:pub.10.1007/s11182-017-1041-7
    20 sg:pub.10.1007/s11182-018-1582-4
    21 sg:pub.10.1023/a:1012423629038
    22 sg:pub.10.1023/a:1016098816502
    23 sg:pub.10.1134/s0040577921090087
    24 schema:datePublished 2022-06-23
    25 schema:datePublishedReg 2022-06-23
    26 schema:description Abstract We construct approximate analytic solutions of the Logunov–Tavkhelidze equation in the case of a potential that, in the one-dimensional relativistic configuration representation, has the form analogous to the potential of the nonrelativistic harmonic oscillator in the coordinate representation. The wave functions are obtained in both the momentum and relativistic configuration representations. The approximate values of the energy of the relativistic harmonic oscillator are the roots of transcendental equations. The wave functions in the relativistic configuration representation have additional zeros in comparison with the wave functions of the corresponding states of the nonrelativistic harmonic oscillator in the coordinate representation.
    27 schema:genre article
    28 schema:isAccessibleForFree false
    29 schema:isPartOf N2482489df011497795e3345dd32a72c3
    30 N386432d2bafc46819b557907cc8bfb26
    31 sg:journal.1327888
    32 schema:keywords Logunov-Tavkhelidze equation
    33 additional zeros
    34 analytic solution
    35 approximate analytic solution
    36 approximate values
    37 cases
    38 comparison
    39 configuration
    40 configuration representation
    41 coordinate representation
    42 corresponding states
    43 energy
    44 equations
    45 form
    46 function
    47 harmonic oscillator
    48 harmonics
    49 momentum
    50 nonrelativistic
    51 oscillator
    52 oscillator potential
    53 potential
    54 relativistic configuration
    55 relativistic configuration representation
    56 relativistic harmonic oscillator
    57 representation
    58 roots
    59 solution
    60 state
    61 values
    62 wave functions
    63 waves
    64 zeros
    65 schema:name Approximate analytic solution of the Logunov–Tavkhelidze equation for a one-dimensional oscillator potential in the relativistic configuration representation
    66 schema:pagination 826-837
    67 schema:productId N2c043da8f93f4943b64d8a5a7c53ad82
    68 N9996cfe3d4034d82b4632548cf5b9218
    69 schema:sameAs https://app.dimensions.ai/details/publication/pub.1148913271
    70 https://doi.org/10.1134/s0040577922060058
    71 schema:sdDatePublished 2022-10-01T06:50
    72 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    73 schema:sdPublisher Nb89fd7e3a8614118bfcce7d863785cc6
    74 schema:url https://doi.org/10.1134/s0040577922060058
    75 sgo:license sg:explorer/license/
    76 sgo:sdDataset articles
    77 rdf:type schema:ScholarlyArticle
    78 N00b74f95db0d4789b5f8e72f083c7ce2 rdf:first N4b8989b38b9543feaeb8ca1014ad7661
    79 rdf:rest rdf:nil
    80 N2482489df011497795e3345dd32a72c3 schema:issueNumber 3
    81 rdf:type schema:PublicationIssue
    82 N2c043da8f93f4943b64d8a5a7c53ad82 schema:name dimensions_id
    83 schema:value pub.1148913271
    84 rdf:type schema:PropertyValue
    85 N386432d2bafc46819b557907cc8bfb26 schema:volumeNumber 211
    86 rdf:type schema:PublicationVolume
    87 N4b8989b38b9543feaeb8ca1014ad7661 schema:affiliation grid-institutes:grid.440509.c
    88 schema:familyName Kapshai
    89 schema:givenName V. N.
    90 rdf:type schema:Person
    91 N4e66c95cbe4a492ab5904f8be7fe16e6 rdf:first sg:person.013261062233.58
    92 rdf:rest N00b74f95db0d4789b5f8e72f083c7ce2
    93 N9996cfe3d4034d82b4632548cf5b9218 schema:name doi
    94 schema:value 10.1134/s0040577922060058
    95 rdf:type schema:PropertyValue
    96 Nb89fd7e3a8614118bfcce7d863785cc6 schema:name Springer Nature - SN SciGraph project
    97 rdf:type schema:Organization
    98 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    99 schema:name Mathematical Sciences
    100 rdf:type schema:DefinedTerm
    101 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    102 schema:name Pure Mathematics
    103 rdf:type schema:DefinedTerm
    104 sg:journal.1327888 schema:issn 0040-5779
    105 1573-9333
    106 schema:name Theoretical and Mathematical Physics
    107 schema:publisher Pleiades Publishing
    108 rdf:type schema:Periodical
    109 sg:person.013261062233.58 schema:affiliation grid-institutes:grid.440509.c
    110 schema:familyName Grishechkin
    111 schema:givenName Yu. A.
    112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013261062233.58
    113 rdf:type schema:Person
    114 sg:pub.10.1007/978-1-4684-7550-0_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008631404
    115 https://doi.org/10.1007/978-1-4684-7550-0_3
    116 rdf:type schema:CreativeWork
    117 sg:pub.10.1007/978-3-0348-8219-4_15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016717991
    118 https://doi.org/10.1007/978-3-0348-8219-4_15
    119 rdf:type schema:CreativeWork
    120 sg:pub.10.1007/bf01014791 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003762830
    121 https://doi.org/10.1007/bf01014791
    122 rdf:type schema:CreativeWork
    123 sg:pub.10.1007/bf01015165 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006601212
    124 https://doi.org/10.1007/bf01015165
    125 rdf:type schema:CreativeWork
    126 sg:pub.10.1007/bf01015807 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020042156
    127 https://doi.org/10.1007/bf01015807
    128 rdf:type schema:CreativeWork
    129 sg:pub.10.1007/bf01016385 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000193679
    130 https://doi.org/10.1007/bf01016385
    131 rdf:type schema:CreativeWork
    132 sg:pub.10.1007/bf01017106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038294364
    133 https://doi.org/10.1007/bf01017106
    134 rdf:type schema:CreativeWork
    135 sg:pub.10.1007/bf01017486 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000473411
    136 https://doi.org/10.1007/bf01017486
    137 rdf:type schema:CreativeWork
    138 sg:pub.10.1007/bf01037674 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028638385
    139 https://doi.org/10.1007/bf01037674
    140 rdf:type schema:CreativeWork
    141 sg:pub.10.1007/bf01037987 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051705699
    142 https://doi.org/10.1007/bf01037987
    143 rdf:type schema:CreativeWork
    144 sg:pub.10.1007/bf01038009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002410377
    145 https://doi.org/10.1007/bf01038009
    146 rdf:type schema:CreativeWork
    147 sg:pub.10.1007/bf02514953 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049031795
    148 https://doi.org/10.1007/bf02514953
    149 rdf:type schema:CreativeWork
    150 sg:pub.10.1007/bf02750359 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000164147
    151 https://doi.org/10.1007/bf02750359
    152 rdf:type schema:CreativeWork
    153 sg:pub.10.1007/s11182-009-9275-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037426642
    154 https://doi.org/10.1007/s11182-009-9275-7
    155 rdf:type schema:CreativeWork
    156 sg:pub.10.1007/s11182-013-0053-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040942721
    157 https://doi.org/10.1007/s11182-013-0053-1
    158 rdf:type schema:CreativeWork
    159 sg:pub.10.1007/s11182-017-1041-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085209978
    160 https://doi.org/10.1007/s11182-017-1041-7
    161 rdf:type schema:CreativeWork
    162 sg:pub.10.1007/s11182-018-1582-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110908684
    163 https://doi.org/10.1007/s11182-018-1582-4
    164 rdf:type schema:CreativeWork
    165 sg:pub.10.1023/a:1012423629038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019216122
    166 https://doi.org/10.1023/a:1012423629038
    167 rdf:type schema:CreativeWork
    168 sg:pub.10.1023/a:1016098816502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013007200
    169 https://doi.org/10.1023/a:1016098816502
    170 rdf:type schema:CreativeWork
    171 sg:pub.10.1134/s0040577921090087 schema:sameAs https://app.dimensions.ai/details/publication/pub.1141331728
    172 https://doi.org/10.1134/s0040577921090087
    173 rdf:type schema:CreativeWork
    174 grid-institutes:grid.440509.c schema:alternateName Francisk Skorina Gomel State University, Gomel, Belarus
    175 schema:name Francisk Skorina Gomel State University, Gomel, Belarus
    176 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...