Bogoliubov’s causal perturbative QED and white noise. Interacting fields View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2022-06-23

AUTHORS

J. Wawrzycki

ABSTRACT

We present Bogoliubov’s causal perturbative QFT with a single refinement: the creation–annihilation operators at a point, i.e., for a specific momentum, are mathematically interpreted as the Hida operators from the white noise analysis. We leave the rest of the theory completely unchanged. This allows avoiding infrared and ultraviolet divergences in the transition to the adiabatic limit for interacting fields. We present the existence proof for the adiabatic limit for interacting fields in causal QED with Hida operators. This limit exists if and only if the normalization in the Epstein–Glaser splitting of the causal distributions, in the construction of the scattering operator, is “natural,”, which eliminates the arbitrariness in choosing the splitting that makes the theory definite, with its predictive power considerably strengthened. We present the example of a charge–mass relation that can be proved within this theory and is confirmed experimentally. More... »

PAGES

775-816

References to SciGraph publications

  • 1999-05. A Local (Perturbative) Construction of Observables in Gauge Theories: The Example of QED in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1990-06. Interacting fields in finite QED in IL NUOVO CIMENTO A (1971-1996)
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1134/s0040577922060034

    DOI

    http://dx.doi.org/10.1134/s0040577922060034

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1148913269


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Bogoliubov Labolatory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna, Russia", 
              "id": "http://www.grid.ac/institutes/grid.33762.33", 
              "name": [
                "Bogoliubov Labolatory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wawrzycki", 
            "givenName": "J.", 
            "id": "sg:person.011445542346.46", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011445542346.46"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf02799234", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040393611", 
              "https://doi.org/10.1007/bf02799234"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s002200050606", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042461485", 
              "https://doi.org/10.1007/s002200050606"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2022-06-23", 
        "datePublishedReg": "2022-06-23", 
        "description": "Abstract  We present Bogoliubov\u2019s causal perturbative QFT with a single  refinement: the creation\u2013annihilation operators at a point, i.e.,  for a specific momentum, are mathematically interpreted as the Hida  operators from the white noise analysis. We leave the rest of the  theory completely unchanged. This allows avoiding infrared and  ultraviolet divergences in the transition to the adiabatic limit for  interacting fields. We present the existence proof for the adiabatic  limit for interacting fields in causal QED with Hida operators. This  limit exists if and only if the normalization in the Epstein\u2013Glaser  splitting of the causal distributions, in the construction of the  scattering operator, is \u201cnatural,\u201d, which eliminates the  arbitrariness in choosing the splitting that makes the theory  definite, with its predictive power considerably strengthened. We present the example of a charge\u2013mass relation that can be proved  within this theory and is confirmed experimentally.", 
        "genre": "article", 
        "id": "sg:pub.10.1134/s0040577922060034", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1327888", 
            "issn": [
              "0040-5779", 
              "1573-9333"
            ], 
            "name": "Theoretical and Mathematical Physics", 
            "publisher": "Pleiades Publishing", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "211"
          }
        ], 
        "keywords": [
          "creation-annihilation operators", 
          "white noise analysis", 
          "perturbative QFT", 
          "existence proof", 
          "ultraviolet divergences", 
          "specific momentum", 
          "adiabatic limit", 
          "white noise", 
          "perturbative QED", 
          "operators", 
          "QED", 
          "causal distributions", 
          "noise analysis", 
          "theory", 
          "splitting", 
          "field", 
          "QFT", 
          "definite", 
          "momentum", 
          "limit", 
          "adiabatic", 
          "transition", 
          "predictive power", 
          "noise", 
          "proof", 
          "arbitrariness", 
          "distribution", 
          "point", 
          "HIDA", 
          "divergence", 
          "power", 
          "construction", 
          "refinement", 
          "analysis", 
          "relation", 
          "normalization", 
          "example", 
          "rest"
        ], 
        "name": "Bogoliubov\u2019s causal perturbative QED and white noise. Interacting fields", 
        "pagination": "775-816", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1148913269"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1134/s0040577922060034"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1134/s0040577922060034", 
          "https://app.dimensions.ai/details/publication/pub.1148913269"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-09-02T16:08", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_949.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1134/s0040577922060034"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0040577922060034'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0040577922060034'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0040577922060034'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0040577922060034'


     

    This table displays all metadata directly associated to this object as RDF triples.

    103 TRIPLES      21 PREDICATES      64 URIs      54 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1134/s0040577922060034 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author Nac20603cfd5549f9a869cdecc4e7a881
    4 schema:citation sg:pub.10.1007/bf02799234
    5 sg:pub.10.1007/s002200050606
    6 schema:datePublished 2022-06-23
    7 schema:datePublishedReg 2022-06-23
    8 schema:description Abstract We present Bogoliubov’s causal perturbative QFT with a single refinement: the creation–annihilation operators at a point, i.e., for a specific momentum, are mathematically interpreted as the Hida operators from the white noise analysis. We leave the rest of the theory completely unchanged. This allows avoiding infrared and ultraviolet divergences in the transition to the adiabatic limit for interacting fields. We present the existence proof for the adiabatic limit for interacting fields in causal QED with Hida operators. This limit exists if and only if the normalization in the Epstein–Glaser splitting of the causal distributions, in the construction of the scattering operator, is “natural,”, which eliminates the arbitrariness in choosing the splitting that makes the theory definite, with its predictive power considerably strengthened. We present the example of a charge–mass relation that can be proved within this theory and is confirmed experimentally.
    9 schema:genre article
    10 schema:isAccessibleForFree true
    11 schema:isPartOf Nd074c4539dab464f99a7bcfb2f0a6847
    12 Ne9fd15ea29504457bfbcd09b7cdd75de
    13 sg:journal.1327888
    14 schema:keywords HIDA
    15 QED
    16 QFT
    17 adiabatic
    18 adiabatic limit
    19 analysis
    20 arbitrariness
    21 causal distributions
    22 construction
    23 creation-annihilation operators
    24 definite
    25 distribution
    26 divergence
    27 example
    28 existence proof
    29 field
    30 limit
    31 momentum
    32 noise
    33 noise analysis
    34 normalization
    35 operators
    36 perturbative QED
    37 perturbative QFT
    38 point
    39 power
    40 predictive power
    41 proof
    42 refinement
    43 relation
    44 rest
    45 specific momentum
    46 splitting
    47 theory
    48 transition
    49 ultraviolet divergences
    50 white noise
    51 white noise analysis
    52 schema:name Bogoliubov’s causal perturbative QED and white noise. Interacting fields
    53 schema:pagination 775-816
    54 schema:productId N12a90f3aa93c4e7ab9d1af203d372044
    55 N319c44ffe9894addbc2a0e00c395a1c4
    56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1148913269
    57 https://doi.org/10.1134/s0040577922060034
    58 schema:sdDatePublished 2022-09-02T16:08
    59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    60 schema:sdPublisher N18d78dc113d540dfbb4096a3694ea154
    61 schema:url https://doi.org/10.1134/s0040577922060034
    62 sgo:license sg:explorer/license/
    63 sgo:sdDataset articles
    64 rdf:type schema:ScholarlyArticle
    65 N12a90f3aa93c4e7ab9d1af203d372044 schema:name dimensions_id
    66 schema:value pub.1148913269
    67 rdf:type schema:PropertyValue
    68 N18d78dc113d540dfbb4096a3694ea154 schema:name Springer Nature - SN SciGraph project
    69 rdf:type schema:Organization
    70 N319c44ffe9894addbc2a0e00c395a1c4 schema:name doi
    71 schema:value 10.1134/s0040577922060034
    72 rdf:type schema:PropertyValue
    73 Nac20603cfd5549f9a869cdecc4e7a881 rdf:first sg:person.011445542346.46
    74 rdf:rest rdf:nil
    75 Nd074c4539dab464f99a7bcfb2f0a6847 schema:issueNumber 3
    76 rdf:type schema:PublicationIssue
    77 Ne9fd15ea29504457bfbcd09b7cdd75de schema:volumeNumber 211
    78 rdf:type schema:PublicationVolume
    79 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    80 schema:name Mathematical Sciences
    81 rdf:type schema:DefinedTerm
    82 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    83 schema:name Pure Mathematics
    84 rdf:type schema:DefinedTerm
    85 sg:journal.1327888 schema:issn 0040-5779
    86 1573-9333
    87 schema:name Theoretical and Mathematical Physics
    88 schema:publisher Pleiades Publishing
    89 rdf:type schema:Periodical
    90 sg:person.011445542346.46 schema:affiliation grid-institutes:grid.33762.33
    91 schema:familyName Wawrzycki
    92 schema:givenName J.
    93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011445542346.46
    94 rdf:type schema:Person
    95 sg:pub.10.1007/bf02799234 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040393611
    96 https://doi.org/10.1007/bf02799234
    97 rdf:type schema:CreativeWork
    98 sg:pub.10.1007/s002200050606 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042461485
    99 https://doi.org/10.1007/s002200050606
    100 rdf:type schema:CreativeWork
    101 grid-institutes:grid.33762.33 schema:alternateName Bogoliubov Labolatory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna, Russia
    102 schema:name Bogoliubov Labolatory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna, Russia
    103 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...