Local and nonlocal complex discrete sine-Gordon equation. Solutions and continuum limits View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2022-06-23

AUTHORS

Xiao-bo Xiang, Wei Feng, Song-lin Zhao

ABSTRACT

We study local and nonlocal complex reductions of a discrete negative-order Ablowitz–Kaup–Newell–Segur equation. For the resulting local and nonlocal complex discrete sine-Gordon equations, we construct solutions of the Cauchy matrix type, including soliton solutions and Jordan-block solutions. The dynamics of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1$$\end{document}-soliton solutions are analyzed and illustrated. Continuum limits of the resulting local and nonlocal complex discrete sine-Gordon equations are discussed. More... »

PAGES

758-774

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0040577922060022

DOI

http://dx.doi.org/10.1134/s0040577922060022

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1148913268


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou, China", 
          "id": "http://www.grid.ac/institutes/grid.469325.f", 
          "name": [
            "Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xiang", 
        "givenName": "Xiao-bo", 
        "id": "sg:person.012333043274.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012333043274.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou, China", 
          "id": "http://www.grid.ac/institutes/grid.469325.f", 
          "name": [
            "Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Feng", 
        "givenName": "Wei", 
        "id": "sg:person.016003327071.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016003327071.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou, China", 
          "id": "http://www.grid.ac/institutes/grid.469325.f", 
          "name": [
            "Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhao", 
        "givenName": "Song-lin", 
        "id": "sg:person.014012315210.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014012315210.95"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/s41598-017-00844-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084537895", 
          "https://doi.org/10.1038/s41598-017-00844-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10208-012-9133-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046029373", 
          "https://doi.org/10.1007/s10208-012-9133-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00220-002-0762-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041578484", 
          "https://doi.org/10.1007/s00220-002-0762-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0040577922030023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1146517263", 
          "https://doi.org/10.1134/s0040577922030023"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1080/14029251.2016.1237201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042185025", 
          "https://doi.org/10.1080/14029251.2016.1237201"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2022-06-23", 
    "datePublishedReg": "2022-06-23", 
    "description": "Abstract  We study local and nonlocal complex reductions of a discrete  negative-order Ablowitz\u2013Kaup\u2013Newell\u2013Segur equation. For the  resulting local and nonlocal complex discrete sine-Gordon equations,  we construct solutions of the Cauchy matrix type, including soliton  solutions and Jordan-block solutions. The dynamics of \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$1$$\\end{document}-soliton  solutions are analyzed and illustrated. Continuum limits of the  resulting local and nonlocal complex discrete sine-Gordon equations  are discussed.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s0040577922060022", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.8118099", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1327888", 
        "issn": [
          "0040-5779", 
          "1573-9333"
        ], 
        "name": "Theoretical and Mathematical Physics", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "211"
      }
    ], 
    "keywords": [
      "discrete sine-Gordon equation", 
      "sine-Gordon equation", 
      "continuum limit", 
      "Newell\u2013Segur equation", 
      "Ablowitz\u2013Kaup", 
      "equations", 
      "solitons", 
      "solution", 
      "dynamics", 
      "limit", 
      "matrix type", 
      "complex reduction", 
      "types", 
      "reduction"
    ], 
    "name": "Local and nonlocal complex discrete sine-Gordon equation. Solutions and continuum limits", 
    "pagination": "758-774", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1148913268"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0040577922060022"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0040577922060022", 
      "https://app.dimensions.ai/details/publication/pub.1148913268"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T16:07", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_925.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s0040577922060022"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0040577922060022'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0040577922060022'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0040577922060022'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0040577922060022'


 

This table displays all metadata directly associated to this object as RDF triples.

107 TRIPLES      21 PREDICATES      43 URIs      30 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0040577922060022 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nc9f849d813eb42d3a7deb2da02127d2b
4 schema:citation sg:pub.10.1007/s00220-002-0762-8
5 sg:pub.10.1007/s10208-012-9133-9
6 sg:pub.10.1038/s41598-017-00844-y
7 sg:pub.10.1080/14029251.2016.1237201
8 sg:pub.10.1134/s0040577922030023
9 schema:datePublished 2022-06-23
10 schema:datePublishedReg 2022-06-23
11 schema:description Abstract We study local and nonlocal complex reductions of a discrete negative-order Ablowitz–Kaup–Newell–Segur equation. For the resulting local and nonlocal complex discrete sine-Gordon equations, we construct solutions of the Cauchy matrix type, including soliton solutions and Jordan-block solutions. The dynamics of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1$$\end{document}-soliton solutions are analyzed and illustrated. Continuum limits of the resulting local and nonlocal complex discrete sine-Gordon equations are discussed.
12 schema:genre article
13 schema:isAccessibleForFree false
14 schema:isPartOf N84eb28a093564ea8843af5f1daf3d34f
15 Ne5b2fc1471c549c594613da67cc1eeb4
16 sg:journal.1327888
17 schema:keywords Ablowitz–Kaup
18 Newell–Segur equation
19 complex reduction
20 continuum limit
21 discrete sine-Gordon equation
22 dynamics
23 equations
24 limit
25 matrix type
26 reduction
27 sine-Gordon equation
28 solitons
29 solution
30 types
31 schema:name Local and nonlocal complex discrete sine-Gordon equation. Solutions and continuum limits
32 schema:pagination 758-774
33 schema:productId N597ba6ef8d7a4580b34d09ecc9155fa5
34 Nc38915b802a140f0b6307a401d7fe368
35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1148913268
36 https://doi.org/10.1134/s0040577922060022
37 schema:sdDatePublished 2022-09-02T16:07
38 schema:sdLicense https://scigraph.springernature.com/explorer/license/
39 schema:sdPublisher N690e8b912cee4466accfe0135c53dd74
40 schema:url https://doi.org/10.1134/s0040577922060022
41 sgo:license sg:explorer/license/
42 sgo:sdDataset articles
43 rdf:type schema:ScholarlyArticle
44 N0cfd7582c0104d94a63e1fddbcd84c47 rdf:first sg:person.016003327071.19
45 rdf:rest N6b8e46ebbc2940ceaba9a9456d2e0672
46 N597ba6ef8d7a4580b34d09ecc9155fa5 schema:name dimensions_id
47 schema:value pub.1148913268
48 rdf:type schema:PropertyValue
49 N690e8b912cee4466accfe0135c53dd74 schema:name Springer Nature - SN SciGraph project
50 rdf:type schema:Organization
51 N6b8e46ebbc2940ceaba9a9456d2e0672 rdf:first sg:person.014012315210.95
52 rdf:rest rdf:nil
53 N84eb28a093564ea8843af5f1daf3d34f schema:issueNumber 3
54 rdf:type schema:PublicationIssue
55 Nc38915b802a140f0b6307a401d7fe368 schema:name doi
56 schema:value 10.1134/s0040577922060022
57 rdf:type schema:PropertyValue
58 Nc9f849d813eb42d3a7deb2da02127d2b rdf:first sg:person.012333043274.36
59 rdf:rest N0cfd7582c0104d94a63e1fddbcd84c47
60 Ne5b2fc1471c549c594613da67cc1eeb4 schema:volumeNumber 211
61 rdf:type schema:PublicationVolume
62 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
63 schema:name Mathematical Sciences
64 rdf:type schema:DefinedTerm
65 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
66 schema:name Pure Mathematics
67 rdf:type schema:DefinedTerm
68 sg:grant.8118099 http://pending.schema.org/fundedItem sg:pub.10.1134/s0040577922060022
69 rdf:type schema:MonetaryGrant
70 sg:journal.1327888 schema:issn 0040-5779
71 1573-9333
72 schema:name Theoretical and Mathematical Physics
73 schema:publisher Pleiades Publishing
74 rdf:type schema:Periodical
75 sg:person.012333043274.36 schema:affiliation grid-institutes:grid.469325.f
76 schema:familyName Xiang
77 schema:givenName Xiao-bo
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012333043274.36
79 rdf:type schema:Person
80 sg:person.014012315210.95 schema:affiliation grid-institutes:grid.469325.f
81 schema:familyName Zhao
82 schema:givenName Song-lin
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014012315210.95
84 rdf:type schema:Person
85 sg:person.016003327071.19 schema:affiliation grid-institutes:grid.469325.f
86 schema:familyName Feng
87 schema:givenName Wei
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016003327071.19
89 rdf:type schema:Person
90 sg:pub.10.1007/s00220-002-0762-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041578484
91 https://doi.org/10.1007/s00220-002-0762-8
92 rdf:type schema:CreativeWork
93 sg:pub.10.1007/s10208-012-9133-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046029373
94 https://doi.org/10.1007/s10208-012-9133-9
95 rdf:type schema:CreativeWork
96 sg:pub.10.1038/s41598-017-00844-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1084537895
97 https://doi.org/10.1038/s41598-017-00844-y
98 rdf:type schema:CreativeWork
99 sg:pub.10.1080/14029251.2016.1237201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042185025
100 https://doi.org/10.1080/14029251.2016.1237201
101 rdf:type schema:CreativeWork
102 sg:pub.10.1134/s0040577922030023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1146517263
103 https://doi.org/10.1134/s0040577922030023
104 rdf:type schema:CreativeWork
105 grid-institutes:grid.469325.f schema:alternateName Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou, China
106 schema:name Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou, China
107 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...