A new finite-dimensional Hamiltonian systems with a mixed Poisson structure for the KdV equation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2022-06-23

AUTHORS

Dianlou Du, Xue Wang

ABSTRACT

A Lax pair for the KdV equation is derived by a transformation of the eigenfunction. By a polynomial expansion of the eigenfunction for the resulting Lax pair, finite-dimensional integrable systems can be obtained from the Lax pair. These integrable systems are proved to be the Hamiltonian and are shown to have a new Poisson structure such that the entries of its structure matrix are a mixture of linear and quadratic functions of coordinates. The odd and even functions of the spectral parameter are introduced to build a generating function for conserved integrals. Based on the generating function, the integrability of these Hamiltonian systems is shown. More... »

PAGES

745-757

References to SciGraph publications

  • 1997-01. Boundary value problem for the KDV equation on a half-line in THEORETICAL AND MATHEMATICAL PHYSICS
  • 1977-08. Pole expansions of nonlinear partial differential equations in IL NUOVO CIMENTO B (1971-1996)
  • 1971-10. Korteweg-de Vries equation: A completely integrable Hamiltonian system in FUNCTIONAL ANALYSIS AND ITS APPLICATIONS
  • 2000-12. Symmetry Approach to the Integrability Problem in THEORETICAL AND MATHEMATICAL PHYSICS
  • 1974-07. The periodic problem for the Korteweg—de vries equation in FUNCTIONAL ANALYSIS AND ITS APPLICATIONS
  • 1981-12. Some remarks on the rational solutions of the burgers equation in LETTERE AL NUOVO CIMENTO (1971-1985)
  • 2017-12. Algebro-geometric solutions of the Dirac hierarchy in THEORETICAL AND MATHEMATICAL PHYSICS
  • 1987-09. Expansions with respect to squares, symplectic and poisson structures associated with the Sturm-Liouville problem. I in THEORETICAL AND MATHEMATICAL PHYSICS
  • 1976-01. The relationship between Hamiltonian formalisms of stationary and nonstationary problems in FUNCTIONAL ANALYSIS AND ITS APPLICATIONS
  • 2014-06. Quasiperiodic solutions of the discrete Chen-Lee-Liu hierarchy in THEORETICAL AND MATHEMATICAL PHYSICS
  • 1991-09. A classical integrable system and the involutive representation of solutions of theKdV equation in ACTA MATHEMATICA SINICA, ENGLISH SERIES
  • 1988-05. Expansions with respect to squares, symplectic and poisson structures associated with the Sturm-Liouville problem. II in THEORETICAL AND MATHEMATICAL PHYSICS
  • 1990. Classical Integrable Systems Generated Through Nonlinearization of Eigenvalue Problems in NONLINEAR PHYSICS
  • 1993. Applications of Lie Groups to Differential Equations in NONE
  • 1978-09. Motion of poles and zeros of special solutions of nonlinear and linear partial differential equations and related «solvable» many-body problems in IL NUOVO CIMENTO B (1971-1996)
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1134/s0040577922060010

    DOI

    http://dx.doi.org/10.1134/s0040577922060010

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1148913267


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "School of Mathematics and Statistics, Zhengzhou University, Zhengzhou, Henan, China", 
              "id": "http://www.grid.ac/institutes/grid.207374.5", 
              "name": [
                "School of Mathematics and Statistics, Zhengzhou University, Zhengzhou, Henan, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Du", 
            "givenName": "Dianlou", 
            "id": "sg:person.011236311341.04", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011236311341.04"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "College of Science, Henan Institute of Engineering, Zhengzhou, Henan, China", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "School of Mathematics and Statistics, Zhengzhou University, Zhengzhou, Henan, China", 
                "College of Science, Henan Institute of Engineering, Zhengzhou, Henan, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Xue", 
            "id": "sg:person.016673240775.52", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016673240775.52"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf02582998", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017571683", 
              "https://doi.org/10.1007/bf02582998"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s0040577917120145", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100166340", 
              "https://doi.org/10.1134/s0040577917120145"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01086739", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042504708", 
              "https://doi.org/10.1007/bf01086739"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01017483", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021073907", 
              "https://doi.org/10.1007/bf01017483"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4612-4350-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109705033", 
              "https://doi.org/10.1007/978-1-4612-4350-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11232-014-0169-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041665830", 
              "https://doi.org/10.1007/s11232-014-0169-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1026602012111", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049857862", 
              "https://doi.org/10.1023/a:1026602012111"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02745233", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035114810", 
              "https://doi.org/10.1007/bf02745233"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01075697", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038402039", 
              "https://doi.org/10.1007/bf01075697"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02630371", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033660093", 
              "https://doi.org/10.1007/bf02630371"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02728217", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043375986", 
              "https://doi.org/10.1007/bf02728217"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01075765", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034291316", 
              "https://doi.org/10.1007/bf01075765"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02721013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040144833", 
              "https://doi.org/10.1007/bf02721013"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01018296", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038215086", 
              "https://doi.org/10.1007/bf01018296"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-84148-4_9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034431737", 
              "https://doi.org/10.1007/978-3-642-84148-4_9"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2022-06-23", 
        "datePublishedReg": "2022-06-23", 
        "description": "Abstract  A Lax pair for the KdV equation is derived by a transformation of  the eigenfunction. By a polynomial expansion of the eigenfunction  for the resulting Lax pair, finite-dimensional integrable systems  can be obtained from the Lax pair. These integrable systems are  proved to be the Hamiltonian and are shown to have a new Poisson  structure such that the entries of its structure matrix are a mixture of linear and quadratic functions of coordinates. The odd  and even functions of the spectral parameter are introduced to build  a generating function for conserved integrals. Based on the  generating function, the integrability of these Hamiltonian systems  is shown.", 
        "genre": "article", 
        "id": "sg:pub.10.1134/s0040577922060010", 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.7175439", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1327888", 
            "issn": [
              "0040-5779", 
              "1573-9333"
            ], 
            "name": "Theoretical and Mathematical Physics", 
            "publisher": "Pleiades Publishing", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "211"
          }
        ], 
        "keywords": [
          "Lax pair", 
          "integrable systems", 
          "KdV equation", 
          "Hamiltonian systems", 
          "new finite-dimensional Hamiltonian systems", 
          "finite-dimensional integrable systems", 
          "finite-dimensional Hamiltonian system", 
          "new Poisson", 
          "Poisson structure", 
          "polynomial expansion", 
          "quadratic function", 
          "equations", 
          "eigenfunctions", 
          "spectral parameters", 
          "structure matrix", 
          "integrability", 
          "integrals", 
          "Poisson", 
          "coordinates", 
          "function", 
          "system", 
          "matrix", 
          "pairs", 
          "parameters", 
          "structure", 
          "expansion", 
          "transformation", 
          "mixture", 
          "entry"
        ], 
        "name": "A new finite-dimensional Hamiltonian systems with a mixed Poisson structure for the KdV equation", 
        "pagination": "745-757", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1148913267"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1134/s0040577922060010"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1134/s0040577922060010", 
          "https://app.dimensions.ai/details/publication/pub.1148913267"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-09-02T16:06", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_931.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1134/s0040577922060010"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0040577922060010'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0040577922060010'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0040577922060010'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0040577922060010'


     

    This table displays all metadata directly associated to this object as RDF triples.

    159 TRIPLES      21 PREDICATES      68 URIs      45 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1134/s0040577922060010 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author Nf31d0b7146c24a7083461496ca0112e2
    4 schema:citation sg:pub.10.1007/978-1-4612-4350-2
    5 sg:pub.10.1007/978-3-642-84148-4_9
    6 sg:pub.10.1007/bf01017483
    7 sg:pub.10.1007/bf01018296
    8 sg:pub.10.1007/bf01075697
    9 sg:pub.10.1007/bf01075765
    10 sg:pub.10.1007/bf01086739
    11 sg:pub.10.1007/bf02582998
    12 sg:pub.10.1007/bf02630371
    13 sg:pub.10.1007/bf02721013
    14 sg:pub.10.1007/bf02728217
    15 sg:pub.10.1007/bf02745233
    16 sg:pub.10.1007/s11232-014-0169-7
    17 sg:pub.10.1023/a:1026602012111
    18 sg:pub.10.1134/s0040577917120145
    19 schema:datePublished 2022-06-23
    20 schema:datePublishedReg 2022-06-23
    21 schema:description Abstract A Lax pair for the KdV equation is derived by a transformation of the eigenfunction. By a polynomial expansion of the eigenfunction for the resulting Lax pair, finite-dimensional integrable systems can be obtained from the Lax pair. These integrable systems are proved to be the Hamiltonian and are shown to have a new Poisson structure such that the entries of its structure matrix are a mixture of linear and quadratic functions of coordinates. The odd and even functions of the spectral parameter are introduced to build a generating function for conserved integrals. Based on the generating function, the integrability of these Hamiltonian systems is shown.
    22 schema:genre article
    23 schema:isAccessibleForFree false
    24 schema:isPartOf N3090fc70047d4be88234d96d0d737b29
    25 N3316fc33e6754fb39b73de517f84e05f
    26 sg:journal.1327888
    27 schema:keywords Hamiltonian systems
    28 KdV equation
    29 Lax pair
    30 Poisson
    31 Poisson structure
    32 coordinates
    33 eigenfunctions
    34 entry
    35 equations
    36 expansion
    37 finite-dimensional Hamiltonian system
    38 finite-dimensional integrable systems
    39 function
    40 integrability
    41 integrable systems
    42 integrals
    43 matrix
    44 mixture
    45 new Poisson
    46 new finite-dimensional Hamiltonian systems
    47 pairs
    48 parameters
    49 polynomial expansion
    50 quadratic function
    51 spectral parameters
    52 structure
    53 structure matrix
    54 system
    55 transformation
    56 schema:name A new finite-dimensional Hamiltonian systems with a mixed Poisson structure for the KdV equation
    57 schema:pagination 745-757
    58 schema:productId N05c4cb4b64f94e4d91eabcb7e9119ab7
    59 N61e95fe1a0f64092b0c03550e0601efa
    60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1148913267
    61 https://doi.org/10.1134/s0040577922060010
    62 schema:sdDatePublished 2022-09-02T16:06
    63 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    64 schema:sdPublisher N09213289985448aaab8c67a8e80968ce
    65 schema:url https://doi.org/10.1134/s0040577922060010
    66 sgo:license sg:explorer/license/
    67 sgo:sdDataset articles
    68 rdf:type schema:ScholarlyArticle
    69 N05c4cb4b64f94e4d91eabcb7e9119ab7 schema:name dimensions_id
    70 schema:value pub.1148913267
    71 rdf:type schema:PropertyValue
    72 N09213289985448aaab8c67a8e80968ce schema:name Springer Nature - SN SciGraph project
    73 rdf:type schema:Organization
    74 N3090fc70047d4be88234d96d0d737b29 schema:issueNumber 3
    75 rdf:type schema:PublicationIssue
    76 N3316fc33e6754fb39b73de517f84e05f schema:volumeNumber 211
    77 rdf:type schema:PublicationVolume
    78 N61e95fe1a0f64092b0c03550e0601efa schema:name doi
    79 schema:value 10.1134/s0040577922060010
    80 rdf:type schema:PropertyValue
    81 Nde9da52c7b424e53be6214e420dda450 rdf:first sg:person.016673240775.52
    82 rdf:rest rdf:nil
    83 Nf31d0b7146c24a7083461496ca0112e2 rdf:first sg:person.011236311341.04
    84 rdf:rest Nde9da52c7b424e53be6214e420dda450
    85 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    86 schema:name Mathematical Sciences
    87 rdf:type schema:DefinedTerm
    88 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    89 schema:name Pure Mathematics
    90 rdf:type schema:DefinedTerm
    91 sg:grant.7175439 http://pending.schema.org/fundedItem sg:pub.10.1134/s0040577922060010
    92 rdf:type schema:MonetaryGrant
    93 sg:journal.1327888 schema:issn 0040-5779
    94 1573-9333
    95 schema:name Theoretical and Mathematical Physics
    96 schema:publisher Pleiades Publishing
    97 rdf:type schema:Periodical
    98 sg:person.011236311341.04 schema:affiliation grid-institutes:grid.207374.5
    99 schema:familyName Du
    100 schema:givenName Dianlou
    101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011236311341.04
    102 rdf:type schema:Person
    103 sg:person.016673240775.52 schema:affiliation grid-institutes:None
    104 schema:familyName Wang
    105 schema:givenName Xue
    106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016673240775.52
    107 rdf:type schema:Person
    108 sg:pub.10.1007/978-1-4612-4350-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109705033
    109 https://doi.org/10.1007/978-1-4612-4350-2
    110 rdf:type schema:CreativeWork
    111 sg:pub.10.1007/978-3-642-84148-4_9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034431737
    112 https://doi.org/10.1007/978-3-642-84148-4_9
    113 rdf:type schema:CreativeWork
    114 sg:pub.10.1007/bf01017483 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021073907
    115 https://doi.org/10.1007/bf01017483
    116 rdf:type schema:CreativeWork
    117 sg:pub.10.1007/bf01018296 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038215086
    118 https://doi.org/10.1007/bf01018296
    119 rdf:type schema:CreativeWork
    120 sg:pub.10.1007/bf01075697 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038402039
    121 https://doi.org/10.1007/bf01075697
    122 rdf:type schema:CreativeWork
    123 sg:pub.10.1007/bf01075765 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034291316
    124 https://doi.org/10.1007/bf01075765
    125 rdf:type schema:CreativeWork
    126 sg:pub.10.1007/bf01086739 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042504708
    127 https://doi.org/10.1007/bf01086739
    128 rdf:type schema:CreativeWork
    129 sg:pub.10.1007/bf02582998 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017571683
    130 https://doi.org/10.1007/bf02582998
    131 rdf:type schema:CreativeWork
    132 sg:pub.10.1007/bf02630371 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033660093
    133 https://doi.org/10.1007/bf02630371
    134 rdf:type schema:CreativeWork
    135 sg:pub.10.1007/bf02721013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040144833
    136 https://doi.org/10.1007/bf02721013
    137 rdf:type schema:CreativeWork
    138 sg:pub.10.1007/bf02728217 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043375986
    139 https://doi.org/10.1007/bf02728217
    140 rdf:type schema:CreativeWork
    141 sg:pub.10.1007/bf02745233 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035114810
    142 https://doi.org/10.1007/bf02745233
    143 rdf:type schema:CreativeWork
    144 sg:pub.10.1007/s11232-014-0169-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041665830
    145 https://doi.org/10.1007/s11232-014-0169-7
    146 rdf:type schema:CreativeWork
    147 sg:pub.10.1023/a:1026602012111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049857862
    148 https://doi.org/10.1023/a:1026602012111
    149 rdf:type schema:CreativeWork
    150 sg:pub.10.1134/s0040577917120145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100166340
    151 https://doi.org/10.1134/s0040577917120145
    152 rdf:type schema:CreativeWork
    153 grid-institutes:None schema:alternateName College of Science, Henan Institute of Engineering, Zhengzhou, Henan, China
    154 schema:name College of Science, Henan Institute of Engineering, Zhengzhou, Henan, China
    155 School of Mathematics and Statistics, Zhengzhou University, Zhengzhou, Henan, China
    156 rdf:type schema:Organization
    157 grid-institutes:grid.207374.5 schema:alternateName School of Mathematics and Statistics, Zhengzhou University, Zhengzhou, Henan, China
    158 schema:name School of Mathematics and Statistics, Zhengzhou University, Zhengzhou, Henan, China
    159 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...