Investigation of the transition to instability of the water boiling front during injection into a geothermal reservoir View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2022-05-24

AUTHORS

G. G. Tsypkin

ABSTRACT

We discuss the stability problem for a boiling front moving at a constant speed in a porous permeable geothermal reservoir. We study the dispersion equation obtained by the method of normal modes. The decay of unstable small perturbations corresponding to large values of the dimensionless wave number is shown analytically. We construct neutral stability curves in the plane of the main parameters. The evolution of the neutral curves with changing parameters shows that an increase in the permeability and initial temperature, as well as a decrease in porosity and initial pressure, leads to an expansion of the instability region. We investigate the dependence of the critical dimensionless wave number on the permeability of a porous medium at which the transition to instability occurs. The obtained critical values give an estimate of the characteristic size of the most unstable perturbation, which varies depending on the process parameters. This size ranges from half a meter to several meters at characteristic values of the geothermal reservoir parameters. Possible types of transitions to instability of the interfaces in filtration problems are discussed. More... »

PAGES

735-743

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0040577922050130

DOI

http://dx.doi.org/10.1134/s0040577922050130

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1148122401


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.435056.1", 
          "name": [
            "Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tsypkin", 
        "givenName": "G. G.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1023/b:tipm.0000010693.67852.eb", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053159957", 
          "https://doi.org/10.1023/b:tipm.0000010693.67852.eb"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s106377610810018x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005532395", 
          "https://doi.org/10.1134/s106377610810018x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0015462817060118", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100622347", 
          "https://doi.org/10.1134/s0015462817060118"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0965542513090078", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021791403", 
          "https://doi.org/10.1134/s0965542513090078"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0015462820020135", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1126654132", 
          "https://doi.org/10.1134/s0015462820020135"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/367450a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033214622", 
          "https://doi.org/10.1038/367450a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0015462821060161", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1143463956", 
          "https://doi.org/10.1134/s0015462821060161"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2022-05-24", 
    "datePublishedReg": "2022-05-24", 
    "description": "Abstract  We discuss the stability problem for a boiling front moving at a constant speed in a porous permeable geothermal reservoir. We study  the dispersion equation obtained by the method of normal modes. The  decay of unstable small perturbations corresponding to large values  of the dimensionless wave number is shown analytically. We  construct neutral stability curves in the plane of the main  parameters. The evolution of the neutral curves with changing  parameters shows that an increase in the permeability and initial  temperature, as well as a decrease in porosity and initial pressure,  leads to an expansion of the instability region. We investigate the  dependence of the critical dimensionless wave number on the  permeability of a porous medium at which the transition to  instability occurs. The obtained critical values give an estimate of  the characteristic size of the most unstable perturbation, which  varies depending on the process parameters. This size ranges from  half a meter to several meters at characteristic values of the  geothermal reservoir parameters. Possible types of transitions to  instability of the interfaces in filtration problems are discussed.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s0040577922050130", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1327888", 
        "issn": [
          "0040-5779", 
          "1573-9333"
        ], 
        "name": "Theoretical and Mathematical Physics", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "211"
      }
    ], 
    "keywords": [
      "dimensionless wave number", 
      "geothermal reservoir", 
      "neutral stability curves", 
      "wave number", 
      "process parameters", 
      "boiling front", 
      "porous media", 
      "reservoir parameters", 
      "initial pressure", 
      "constant speed", 
      "neutral curve", 
      "instability regions", 
      "stability curves", 
      "filtration problems", 
      "unstable perturbations", 
      "stability problem", 
      "dispersion equation", 
      "characteristic size", 
      "characteristic values", 
      "critical value", 
      "meters", 
      "parameters", 
      "reservoir", 
      "large values", 
      "permeability", 
      "porosity", 
      "instability", 
      "front", 
      "normal modes", 
      "small perturbations", 
      "speed", 
      "interface", 
      "temperature", 
      "size", 
      "curves", 
      "water", 
      "equations", 
      "mode", 
      "values", 
      "possible types", 
      "plane", 
      "pressure", 
      "transition", 
      "problem", 
      "perturbations", 
      "method", 
      "dependence", 
      "investigation", 
      "increase", 
      "expansion", 
      "number", 
      "evolution", 
      "medium", 
      "decrease", 
      "varies", 
      "region", 
      "types", 
      "estimates", 
      "injection", 
      "decay"
    ], 
    "name": "Investigation of the transition to instability of the water boiling front during injection into a geothermal reservoir", 
    "pagination": "735-743", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1148122401"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0040577922050130"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0040577922050130", 
      "https://app.dimensions.ai/details/publication/pub.1148122401"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T16:06", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_931.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s0040577922050130"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0040577922050130'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0040577922050130'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0040577922050130'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0040577922050130'


 

This table displays all metadata directly associated to this object as RDF triples.

144 TRIPLES      21 PREDICATES      91 URIs      76 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0040577922050130 schema:about anzsrc-for:01
2 anzsrc-for:02
3 schema:author Nfca06a5110c54fc9a621a57bb447f246
4 schema:citation sg:pub.10.1023/b:tipm.0000010693.67852.eb
5 sg:pub.10.1038/367450a0
6 sg:pub.10.1134/s0015462817060118
7 sg:pub.10.1134/s0015462820020135
8 sg:pub.10.1134/s0015462821060161
9 sg:pub.10.1134/s0965542513090078
10 sg:pub.10.1134/s106377610810018x
11 schema:datePublished 2022-05-24
12 schema:datePublishedReg 2022-05-24
13 schema:description Abstract We discuss the stability problem for a boiling front moving at a constant speed in a porous permeable geothermal reservoir. We study the dispersion equation obtained by the method of normal modes. The decay of unstable small perturbations corresponding to large values of the dimensionless wave number is shown analytically. We construct neutral stability curves in the plane of the main parameters. The evolution of the neutral curves with changing parameters shows that an increase in the permeability and initial temperature, as well as a decrease in porosity and initial pressure, leads to an expansion of the instability region. We investigate the dependence of the critical dimensionless wave number on the permeability of a porous medium at which the transition to instability occurs. The obtained critical values give an estimate of the characteristic size of the most unstable perturbation, which varies depending on the process parameters. This size ranges from half a meter to several meters at characteristic values of the geothermal reservoir parameters. Possible types of transitions to instability of the interfaces in filtration problems are discussed.
14 schema:genre article
15 schema:isAccessibleForFree false
16 schema:isPartOf N670d341b54a742ebb9c4910df0b1a879
17 Nc0eb52ba028d412781da6f1c94122956
18 sg:journal.1327888
19 schema:keywords boiling front
20 characteristic size
21 characteristic values
22 constant speed
23 critical value
24 curves
25 decay
26 decrease
27 dependence
28 dimensionless wave number
29 dispersion equation
30 equations
31 estimates
32 evolution
33 expansion
34 filtration problems
35 front
36 geothermal reservoir
37 increase
38 initial pressure
39 injection
40 instability
41 instability regions
42 interface
43 investigation
44 large values
45 medium
46 meters
47 method
48 mode
49 neutral curve
50 neutral stability curves
51 normal modes
52 number
53 parameters
54 permeability
55 perturbations
56 plane
57 porosity
58 porous media
59 possible types
60 pressure
61 problem
62 process parameters
63 region
64 reservoir
65 reservoir parameters
66 size
67 small perturbations
68 speed
69 stability curves
70 stability problem
71 temperature
72 transition
73 types
74 unstable perturbations
75 values
76 varies
77 water
78 wave number
79 schema:name Investigation of the transition to instability of the water boiling front during injection into a geothermal reservoir
80 schema:pagination 735-743
81 schema:productId N0d5e57b597684fa6a3ae47922cc14742
82 N9a0612e599ef496585886e7b598d5ea5
83 schema:sameAs https://app.dimensions.ai/details/publication/pub.1148122401
84 https://doi.org/10.1134/s0040577922050130
85 schema:sdDatePublished 2022-09-02T16:06
86 schema:sdLicense https://scigraph.springernature.com/explorer/license/
87 schema:sdPublisher Naf070a997c11458592975bb297a65d40
88 schema:url https://doi.org/10.1134/s0040577922050130
89 sgo:license sg:explorer/license/
90 sgo:sdDataset articles
91 rdf:type schema:ScholarlyArticle
92 N0d5e57b597684fa6a3ae47922cc14742 schema:name doi
93 schema:value 10.1134/s0040577922050130
94 rdf:type schema:PropertyValue
95 N44b9c8ddfc91459da94402613c46808d schema:affiliation grid-institutes:grid.435056.1
96 schema:familyName Tsypkin
97 schema:givenName G. G.
98 rdf:type schema:Person
99 N670d341b54a742ebb9c4910df0b1a879 schema:volumeNumber 211
100 rdf:type schema:PublicationVolume
101 N9a0612e599ef496585886e7b598d5ea5 schema:name dimensions_id
102 schema:value pub.1148122401
103 rdf:type schema:PropertyValue
104 Naf070a997c11458592975bb297a65d40 schema:name Springer Nature - SN SciGraph project
105 rdf:type schema:Organization
106 Nc0eb52ba028d412781da6f1c94122956 schema:issueNumber 2
107 rdf:type schema:PublicationIssue
108 Nfca06a5110c54fc9a621a57bb447f246 rdf:first N44b9c8ddfc91459da94402613c46808d
109 rdf:rest rdf:nil
110 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
111 schema:name Mathematical Sciences
112 rdf:type schema:DefinedTerm
113 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
114 schema:name Physical Sciences
115 rdf:type schema:DefinedTerm
116 sg:journal.1327888 schema:issn 0040-5779
117 1573-9333
118 schema:name Theoretical and Mathematical Physics
119 schema:publisher Pleiades Publishing
120 rdf:type schema:Periodical
121 sg:pub.10.1023/b:tipm.0000010693.67852.eb schema:sameAs https://app.dimensions.ai/details/publication/pub.1053159957
122 https://doi.org/10.1023/b:tipm.0000010693.67852.eb
123 rdf:type schema:CreativeWork
124 sg:pub.10.1038/367450a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033214622
125 https://doi.org/10.1038/367450a0
126 rdf:type schema:CreativeWork
127 sg:pub.10.1134/s0015462817060118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100622347
128 https://doi.org/10.1134/s0015462817060118
129 rdf:type schema:CreativeWork
130 sg:pub.10.1134/s0015462820020135 schema:sameAs https://app.dimensions.ai/details/publication/pub.1126654132
131 https://doi.org/10.1134/s0015462820020135
132 rdf:type schema:CreativeWork
133 sg:pub.10.1134/s0015462821060161 schema:sameAs https://app.dimensions.ai/details/publication/pub.1143463956
134 https://doi.org/10.1134/s0015462821060161
135 rdf:type schema:CreativeWork
136 sg:pub.10.1134/s0965542513090078 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021791403
137 https://doi.org/10.1134/s0965542513090078
138 rdf:type schema:CreativeWork
139 sg:pub.10.1134/s106377610810018x schema:sameAs https://app.dimensions.ai/details/publication/pub.1005532395
140 https://doi.org/10.1134/s106377610810018x
141 rdf:type schema:CreativeWork
142 grid-institutes:grid.435056.1 schema:alternateName Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences, Moscow, Russia
143 schema:name Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences, Moscow, Russia
144 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...