Exponentially confining potential well View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-01

AUTHORS

A. D. Alhaidari

ABSTRACT

We introduce an exponentially confining potential well that can be used as a model to describe the structure of a strongly localized system. We obtain an approximate partial solution of the Schrödinger equation with this potential well where we find the lowest energy spectrum and the corresponding wavefunctions. We use the tridiagonal representation approach as the method for obtaining the solution as a finite series of square-integrable functions written in terms of Bessel polynomials. More... »

PAGES

84-96

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0040577921010050

DOI

http://dx.doi.org/10.1134/s0040577921010050

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1139030488


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Saudi Center for Theoretical Physics, Jeddah, Saudi Arabia", 
          "id": "http://www.grid.ac/institutes/grid.472654.6", 
          "name": [
            "Saudi Center for Theoretical Physics, Jeddah, Saudi Arabia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Alhaidari", 
        "givenName": "A. D.", 
        "id": "sg:person.010122155242.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010122155242.02"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02899966", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021725705", 
          "https://doi.org/10.1007/bf02899966"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-05014-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034353895", 
          "https://doi.org/10.1007/978-3-642-05014-5"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2021-01", 
    "datePublishedReg": "2021-01-01", 
    "description": "Abstract   We introduce an exponentially confining potential well that can be used as a model to describe the structure of a strongly localized system. We obtain an approximate partial solution of the Schr\u00f6dinger equation with this potential well where we find the lowest energy spectrum and the corresponding wavefunctions. We use the tridiagonal representation approach as the method for obtaining the solution as a finite series of square-integrable functions written in terms of Bessel polynomials.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s0040577921010050", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1327888", 
        "issn": [
          "0040-5779", 
          "2305-3135"
        ], 
        "name": "Theoretical and Mathematical Physics", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "206"
      }
    ], 
    "keywords": [
      "square integrable functions", 
      "tridiagonal representation approach", 
      "Schr\u00f6dinger equation", 
      "Bessel polynomials", 
      "finite series", 
      "low-energy spectrum", 
      "localized system", 
      "corresponding wavefunctions", 
      "potential well", 
      "energy spectrum", 
      "partial solution", 
      "representation approach", 
      "equations", 
      "polynomials", 
      "solution", 
      "wavefunctions", 
      "model", 
      "terms", 
      "system", 
      "approach", 
      "function", 
      "spectra", 
      "structure", 
      "wells", 
      "series", 
      "potential", 
      "method"
    ], 
    "name": "Exponentially confining potential well", 
    "pagination": "84-96", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1139030488"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0040577921010050"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0040577921010050", 
      "https://app.dimensions.ai/details/publication/pub.1139030488"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:38", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_884.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s0040577921010050"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0040577921010050'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0040577921010050'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0040577921010050'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0040577921010050'


 

This table displays all metadata directly associated to this object as RDF triples.

93 TRIPLES      22 PREDICATES      55 URIs      45 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0040577921010050 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N0a9a5b2399da4c208bd3f27cd75c8ae5
4 schema:citation sg:pub.10.1007/978-3-642-05014-5
5 sg:pub.10.1007/bf02899966
6 schema:datePublished 2021-01
7 schema:datePublishedReg 2021-01-01
8 schema:description Abstract We introduce an exponentially confining potential well that can be used as a model to describe the structure of a strongly localized system. We obtain an approximate partial solution of the Schrödinger equation with this potential well where we find the lowest energy spectrum and the corresponding wavefunctions. We use the tridiagonal representation approach as the method for obtaining the solution as a finite series of square-integrable functions written in terms of Bessel polynomials.
9 schema:genre article
10 schema:inLanguage en
11 schema:isAccessibleForFree true
12 schema:isPartOf N21438b139d0747f2a75f9a22eccf967d
13 Na91cd2bfb83d49e4b4c7db953499e56a
14 sg:journal.1327888
15 schema:keywords Bessel polynomials
16 Schrödinger equation
17 approach
18 corresponding wavefunctions
19 energy spectrum
20 equations
21 finite series
22 function
23 localized system
24 low-energy spectrum
25 method
26 model
27 partial solution
28 polynomials
29 potential
30 potential well
31 representation approach
32 series
33 solution
34 spectra
35 square integrable functions
36 structure
37 system
38 terms
39 tridiagonal representation approach
40 wavefunctions
41 wells
42 schema:name Exponentially confining potential well
43 schema:pagination 84-96
44 schema:productId N6d78fbe30daf4353bca11377bb7b2485
45 Na3d243d1a1374551a58f5671383489a0
46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1139030488
47 https://doi.org/10.1134/s0040577921010050
48 schema:sdDatePublished 2022-05-20T07:38
49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
50 schema:sdPublisher N3ee90c8a1a9c40168fd9271b01cadf7d
51 schema:url https://doi.org/10.1134/s0040577921010050
52 sgo:license sg:explorer/license/
53 sgo:sdDataset articles
54 rdf:type schema:ScholarlyArticle
55 N0a9a5b2399da4c208bd3f27cd75c8ae5 rdf:first sg:person.010122155242.02
56 rdf:rest rdf:nil
57 N21438b139d0747f2a75f9a22eccf967d schema:volumeNumber 206
58 rdf:type schema:PublicationVolume
59 N3ee90c8a1a9c40168fd9271b01cadf7d schema:name Springer Nature - SN SciGraph project
60 rdf:type schema:Organization
61 N6d78fbe30daf4353bca11377bb7b2485 schema:name doi
62 schema:value 10.1134/s0040577921010050
63 rdf:type schema:PropertyValue
64 Na3d243d1a1374551a58f5671383489a0 schema:name dimensions_id
65 schema:value pub.1139030488
66 rdf:type schema:PropertyValue
67 Na91cd2bfb83d49e4b4c7db953499e56a schema:issueNumber 1
68 rdf:type schema:PublicationIssue
69 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
70 schema:name Mathematical Sciences
71 rdf:type schema:DefinedTerm
72 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
73 schema:name Pure Mathematics
74 rdf:type schema:DefinedTerm
75 sg:journal.1327888 schema:issn 0040-5779
76 2305-3135
77 schema:name Theoretical and Mathematical Physics
78 schema:publisher Pleiades Publishing
79 rdf:type schema:Periodical
80 sg:person.010122155242.02 schema:affiliation grid-institutes:grid.472654.6
81 schema:familyName Alhaidari
82 schema:givenName A. D.
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010122155242.02
84 rdf:type schema:Person
85 sg:pub.10.1007/978-3-642-05014-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034353895
86 https://doi.org/10.1007/978-3-642-05014-5
87 rdf:type schema:CreativeWork
88 sg:pub.10.1007/bf02899966 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021725705
89 https://doi.org/10.1007/bf02899966
90 rdf:type schema:CreativeWork
91 grid-institutes:grid.472654.6 schema:alternateName Saudi Center for Theoretical Physics, Jeddah, Saudi Arabia
92 schema:name Saudi Center for Theoretical Physics, Jeddah, Saudi Arabia
93 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...