Calculation of the Discrete Spectrum of some Two-Dimensional Schrödinger Equations with a Magnetic Field View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-12

AUTHORS

A. V. Marikhina, V. G. Marikhin

ABSTRACT

One of us previously obtained and integrated the first examples of two-dimensional Schrödinger equations with a magnetic field belonging to the class of quasi–exactly solvable problems. It was shown that the wave functions are expressed in terms of degenerations of the Heun function: biconfluent and confluent Heun functions. Algebraic conditions were also found that determine the discrete spectrum and wave functions. Our goal here is to solve these algebraic equations numerically. In some cases, we can find an analytic approximation of the discrete spectrum. More... »

PAGES

1797-1805

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0040577918120097

DOI

http://dx.doi.org/10.1134/s0040577918120097

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111224379


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Moscow State University", 
          "id": "https://www.grid.ac/institutes/grid.14476.30", 
          "name": [
            "Lomonosov Moscow State University, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Marikhina", 
        "givenName": "A. V.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Landau Institute for Theoretical Physics", 
          "id": "https://www.grid.ac/institutes/grid.436090.8", 
          "name": [
            "Landau Institute for Theoretical Physics, Chernogolovka, Moscow Oblast, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Marikhin", 
        "givenName": "V. G.", 
        "id": "sg:person.016542431671.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016542431671.41"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/andp.19263840404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010235208"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01466727", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010960717", 
          "https://doi.org/10.1007/bf01466727"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01466727", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010960717", 
          "https://doi.org/10.1007/bf01466727"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0021364016070092", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042041790", 
          "https://doi.org/10.1134/s0021364016070092"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0021364016070092", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042041790", 
          "https://doi.org/10.1134/s0021364016070092"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/0295-5075/112/10006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064227137"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "One of us previously obtained and integrated the first examples of two-dimensional Schr\u00f6dinger equations with a magnetic field belonging to the class of quasi\u2013exactly solvable problems. It was shown that the wave functions are expressed in terms of degenerations of the Heun function: biconfluent and confluent Heun functions. Algebraic conditions were also found that determine the discrete spectrum and wave functions. Our goal here is to solve these algebraic equations numerically. In some cases, we can find an analytic approximation of the discrete spectrum.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s0040577918120097", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1327888", 
        "issn": [
          "0040-5779", 
          "2305-3135"
        ], 
        "name": "Theoretical and Mathematical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "197"
      }
    ], 
    "name": "Calculation of the Discrete Spectrum of some Two-Dimensional Schr\u00f6dinger Equations with a Magnetic Field", 
    "pagination": "1797-1805", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "07d9fd65f2d530ef6204c790078150e23fbde251f2c62f2622d338095db94304"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0040577918120097"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111224379"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0040577918120097", 
      "https://app.dimensions.ai/details/publication/pub.1111224379"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:36", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000314_0000000314/records_55832_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1134%2FS0040577918120097"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0040577918120097'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0040577918120097'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0040577918120097'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0040577918120097'


 

This table displays all metadata directly associated to this object as RDF triples.

84 TRIPLES      21 PREDICATES      31 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0040577918120097 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Ne60dd3b664454c41b7ee3df78e6f45a6
4 schema:citation sg:pub.10.1007/bf01466727
5 sg:pub.10.1134/s0021364016070092
6 https://doi.org/10.1002/andp.19263840404
7 https://doi.org/10.1209/0295-5075/112/10006
8 schema:datePublished 2018-12
9 schema:datePublishedReg 2018-12-01
10 schema:description One of us previously obtained and integrated the first examples of two-dimensional Schrödinger equations with a magnetic field belonging to the class of quasi–exactly solvable problems. It was shown that the wave functions are expressed in terms of degenerations of the Heun function: biconfluent and confluent Heun functions. Algebraic conditions were also found that determine the discrete spectrum and wave functions. Our goal here is to solve these algebraic equations numerically. In some cases, we can find an analytic approximation of the discrete spectrum.
11 schema:genre research_article
12 schema:inLanguage en
13 schema:isAccessibleForFree false
14 schema:isPartOf Na1e5de793594468dac97b5d8e49f58cb
15 Nb8cfde2e94be43458321e4e82f09a17a
16 sg:journal.1327888
17 schema:name Calculation of the Discrete Spectrum of some Two-Dimensional Schrödinger Equations with a Magnetic Field
18 schema:pagination 1797-1805
19 schema:productId N7cf04c1508564e1c96964d05d95548b5
20 N841bda64a3c240a298338a44ca95fdb8
21 Nfe322fed0c874511bf9f2eb68196de47
22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111224379
23 https://doi.org/10.1134/s0040577918120097
24 schema:sdDatePublished 2019-04-11T08:36
25 schema:sdLicense https://scigraph.springernature.com/explorer/license/
26 schema:sdPublisher Ne2ad8bf9c63a4308b61500eba2c63f3d
27 schema:url https://link.springer.com/10.1134%2FS0040577918120097
28 sgo:license sg:explorer/license/
29 sgo:sdDataset articles
30 rdf:type schema:ScholarlyArticle
31 N19ed4bcf6e8c45b8b8e33edee5b78938 schema:affiliation https://www.grid.ac/institutes/grid.14476.30
32 schema:familyName Marikhina
33 schema:givenName A. V.
34 rdf:type schema:Person
35 N7cf04c1508564e1c96964d05d95548b5 schema:name readcube_id
36 schema:value 07d9fd65f2d530ef6204c790078150e23fbde251f2c62f2622d338095db94304
37 rdf:type schema:PropertyValue
38 N841bda64a3c240a298338a44ca95fdb8 schema:name doi
39 schema:value 10.1134/s0040577918120097
40 rdf:type schema:PropertyValue
41 N8d56888ed03f4f158fb8ae4e28121530 rdf:first sg:person.016542431671.41
42 rdf:rest rdf:nil
43 Na1e5de793594468dac97b5d8e49f58cb schema:volumeNumber 197
44 rdf:type schema:PublicationVolume
45 Nb8cfde2e94be43458321e4e82f09a17a schema:issueNumber 3
46 rdf:type schema:PublicationIssue
47 Ne2ad8bf9c63a4308b61500eba2c63f3d schema:name Springer Nature - SN SciGraph project
48 rdf:type schema:Organization
49 Ne60dd3b664454c41b7ee3df78e6f45a6 rdf:first N19ed4bcf6e8c45b8b8e33edee5b78938
50 rdf:rest N8d56888ed03f4f158fb8ae4e28121530
51 Nfe322fed0c874511bf9f2eb68196de47 schema:name dimensions_id
52 schema:value pub.1111224379
53 rdf:type schema:PropertyValue
54 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
55 schema:name Mathematical Sciences
56 rdf:type schema:DefinedTerm
57 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
58 schema:name Pure Mathematics
59 rdf:type schema:DefinedTerm
60 sg:journal.1327888 schema:issn 0040-5779
61 2305-3135
62 schema:name Theoretical and Mathematical Physics
63 rdf:type schema:Periodical
64 sg:person.016542431671.41 schema:affiliation https://www.grid.ac/institutes/grid.436090.8
65 schema:familyName Marikhin
66 schema:givenName V. G.
67 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016542431671.41
68 rdf:type schema:Person
69 sg:pub.10.1007/bf01466727 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010960717
70 https://doi.org/10.1007/bf01466727
71 rdf:type schema:CreativeWork
72 sg:pub.10.1134/s0021364016070092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042041790
73 https://doi.org/10.1134/s0021364016070092
74 rdf:type schema:CreativeWork
75 https://doi.org/10.1002/andp.19263840404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010235208
76 rdf:type schema:CreativeWork
77 https://doi.org/10.1209/0295-5075/112/10006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064227137
78 rdf:type schema:CreativeWork
79 https://www.grid.ac/institutes/grid.14476.30 schema:alternateName Moscow State University
80 schema:name Lomonosov Moscow State University, Moscow, Russia
81 rdf:type schema:Organization
82 https://www.grid.ac/institutes/grid.436090.8 schema:alternateName Landau Institute for Theoretical Physics
83 schema:name Landau Institute for Theoretical Physics, Chernogolovka, Moscow Oblast, Russia
84 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...