The 1/N-Expansion for Flag-Manifold σ-Models View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-12

AUTHORS

D. V. Bykov

ABSTRACT

We derive the Feynman rules for the 1/N-expansion of the simplest σ-model in the class of models that we previously proposed. We consider the case where the target space is the flag manifold U(N)/(U(1) × U(1) × U(N − 2)).

PAGES

1691-1700

References to SciGraph publications

  • 2017-12. A gauged linear formulation for flag-manifold σ-models in THEORETICAL AND MATHEMATICAL PHYSICS
  • 1976-10. Integrable Hamiltonian systems and interactions through quadratic constraints in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • Journal

    TITLE

    Theoretical and Mathematical Physics

    ISSUE

    3

    VOLUME

    197

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1134/s0040577918120012

    DOI

    http://dx.doi.org/10.1134/s0040577918120012

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1111224371


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "author": [
          {
            "affiliation": {
              "alternateName": "Steklov Mathematical Institute", 
              "id": "https://www.grid.ac/institutes/grid.426543.2", 
              "name": [
                "Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bykov", 
            "givenName": "D. V.", 
            "id": "sg:person.010147022050.32", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010147022050.32"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.geomphys.2008.07.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000645703"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0370-2693(80)91004-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003687525"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0370-2693(80)91004-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003687525"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0370-2693(78)90672-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008813972"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0370-2693(78)90672-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008813972"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.nuclphysb.2015.11.015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033179010"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0550-3213(78)90432-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033308098"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0550-3213(78)90432-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033308098"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.nuclphysb.2015.03.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037201183"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.physletb.2016.06.071", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038748335"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0550-3213(78)90211-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040252308"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0550-3213(78)90211-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040252308"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0550-3213(82)90238-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044074890"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0550-3213(82)90238-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044074890"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0550-3213(79)90083-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047013654"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0550-3213(79)90083-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047013654"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0550-3213(79)90276-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047975883"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0550-3213(79)90276-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047975883"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01609119", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052377673", 
              "https://doi.org/10.1007/bf01609119"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01609119", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052377673", 
              "https://doi.org/10.1007/bf01609119"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.23.1800", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060688652"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.23.1800", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060688652"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.25.452", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060689697"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.25.452", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060689697"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.27.825", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060690582"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.27.825", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060690582"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s0040577917120029", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100165327", 
              "https://doi.org/10.1134/s0040577917120029"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-12", 
        "datePublishedReg": "2018-12-01", 
        "description": "We derive the Feynman rules for the 1/N-expansion of the simplest \u03c3-model in the class of models that we previously proposed. We consider the case where the target space is the flag manifold U(N)/(U(1) \u00d7 U(1) \u00d7 U(N \u2212 2)).", 
        "genre": "research_article", 
        "id": "sg:pub.10.1134/s0040577918120012", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1327888", 
            "issn": [
              "0040-5779", 
              "2305-3135"
            ], 
            "name": "Theoretical and Mathematical Physics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "197"
          }
        ], 
        "name": "The 1/N-Expansion for Flag-Manifold \u03c3-Models", 
        "pagination": "1691-1700", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "0d6ac92b0f8cee71a5e0531d00724d0029fdbe372f29e1e54f742baa8c2834a5"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1134/s0040577918120012"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1111224371"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1134/s0040577918120012", 
          "https://app.dimensions.ai/details/publication/pub.1111224371"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T08:36", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000314_0000000314/records_55856_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1134%2FS0040577918120012"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0040577918120012'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0040577918120012'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0040577918120012'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0040577918120012'


     

    This table displays all metadata directly associated to this object as RDF triples.

    103 TRIPLES      20 PREDICATES      41 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1134/s0040577918120012 schema:author N07201096614c467a9ae1350c6b290140
    2 schema:citation sg:pub.10.1007/bf01609119
    3 sg:pub.10.1134/s0040577917120029
    4 https://doi.org/10.1016/0370-2693(78)90672-x
    5 https://doi.org/10.1016/0370-2693(80)91004-7
    6 https://doi.org/10.1016/0550-3213(78)90211-0
    7 https://doi.org/10.1016/0550-3213(78)90432-7
    8 https://doi.org/10.1016/0550-3213(79)90083-x
    9 https://doi.org/10.1016/0550-3213(79)90276-1
    10 https://doi.org/10.1016/0550-3213(82)90238-3
    11 https://doi.org/10.1016/j.geomphys.2008.07.010
    12 https://doi.org/10.1016/j.nuclphysb.2015.03.005
    13 https://doi.org/10.1016/j.nuclphysb.2015.11.015
    14 https://doi.org/10.1016/j.physletb.2016.06.071
    15 https://doi.org/10.1103/physrevd.23.1800
    16 https://doi.org/10.1103/physrevd.25.452
    17 https://doi.org/10.1103/physrevd.27.825
    18 schema:datePublished 2018-12
    19 schema:datePublishedReg 2018-12-01
    20 schema:description We derive the Feynman rules for the 1/N-expansion of the simplest σ-model in the class of models that we previously proposed. We consider the case where the target space is the flag manifold U(N)/(U(1) × U(1) × U(N − 2)).
    21 schema:genre research_article
    22 schema:inLanguage en
    23 schema:isAccessibleForFree false
    24 schema:isPartOf N1d954cd2337b45b8ab0919e2b8330d17
    25 Nc6721b6632f142429649b23cc93f5a1e
    26 sg:journal.1327888
    27 schema:name The 1/N-Expansion for Flag-Manifold σ-Models
    28 schema:pagination 1691-1700
    29 schema:productId N47c0db71372c4e19ba37dfcb390ee0a7
    30 Na31f5599aac048dd8b35d8a3720eef55
    31 Nc016135cfc3a4b0b848cdd67231251f0
    32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111224371
    33 https://doi.org/10.1134/s0040577918120012
    34 schema:sdDatePublished 2019-04-11T08:36
    35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    36 schema:sdPublisher N869a40ba176d4858b41f4a6d506af800
    37 schema:url https://link.springer.com/10.1134%2FS0040577918120012
    38 sgo:license sg:explorer/license/
    39 sgo:sdDataset articles
    40 rdf:type schema:ScholarlyArticle
    41 N07201096614c467a9ae1350c6b290140 rdf:first sg:person.010147022050.32
    42 rdf:rest rdf:nil
    43 N1d954cd2337b45b8ab0919e2b8330d17 schema:volumeNumber 197
    44 rdf:type schema:PublicationVolume
    45 N47c0db71372c4e19ba37dfcb390ee0a7 schema:name dimensions_id
    46 schema:value pub.1111224371
    47 rdf:type schema:PropertyValue
    48 N869a40ba176d4858b41f4a6d506af800 schema:name Springer Nature - SN SciGraph project
    49 rdf:type schema:Organization
    50 Na31f5599aac048dd8b35d8a3720eef55 schema:name readcube_id
    51 schema:value 0d6ac92b0f8cee71a5e0531d00724d0029fdbe372f29e1e54f742baa8c2834a5
    52 rdf:type schema:PropertyValue
    53 Nc016135cfc3a4b0b848cdd67231251f0 schema:name doi
    54 schema:value 10.1134/s0040577918120012
    55 rdf:type schema:PropertyValue
    56 Nc6721b6632f142429649b23cc93f5a1e schema:issueNumber 3
    57 rdf:type schema:PublicationIssue
    58 sg:journal.1327888 schema:issn 0040-5779
    59 2305-3135
    60 schema:name Theoretical and Mathematical Physics
    61 rdf:type schema:Periodical
    62 sg:person.010147022050.32 schema:affiliation https://www.grid.ac/institutes/grid.426543.2
    63 schema:familyName Bykov
    64 schema:givenName D. V.
    65 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010147022050.32
    66 rdf:type schema:Person
    67 sg:pub.10.1007/bf01609119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052377673
    68 https://doi.org/10.1007/bf01609119
    69 rdf:type schema:CreativeWork
    70 sg:pub.10.1134/s0040577917120029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100165327
    71 https://doi.org/10.1134/s0040577917120029
    72 rdf:type schema:CreativeWork
    73 https://doi.org/10.1016/0370-2693(78)90672-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1008813972
    74 rdf:type schema:CreativeWork
    75 https://doi.org/10.1016/0370-2693(80)91004-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003687525
    76 rdf:type schema:CreativeWork
    77 https://doi.org/10.1016/0550-3213(78)90211-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040252308
    78 rdf:type schema:CreativeWork
    79 https://doi.org/10.1016/0550-3213(78)90432-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033308098
    80 rdf:type schema:CreativeWork
    81 https://doi.org/10.1016/0550-3213(79)90083-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1047013654
    82 rdf:type schema:CreativeWork
    83 https://doi.org/10.1016/0550-3213(79)90276-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047975883
    84 rdf:type schema:CreativeWork
    85 https://doi.org/10.1016/0550-3213(82)90238-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044074890
    86 rdf:type schema:CreativeWork
    87 https://doi.org/10.1016/j.geomphys.2008.07.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000645703
    88 rdf:type schema:CreativeWork
    89 https://doi.org/10.1016/j.nuclphysb.2015.03.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037201183
    90 rdf:type schema:CreativeWork
    91 https://doi.org/10.1016/j.nuclphysb.2015.11.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033179010
    92 rdf:type schema:CreativeWork
    93 https://doi.org/10.1016/j.physletb.2016.06.071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038748335
    94 rdf:type schema:CreativeWork
    95 https://doi.org/10.1103/physrevd.23.1800 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060688652
    96 rdf:type schema:CreativeWork
    97 https://doi.org/10.1103/physrevd.25.452 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060689697
    98 rdf:type schema:CreativeWork
    99 https://doi.org/10.1103/physrevd.27.825 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060690582
    100 rdf:type schema:CreativeWork
    101 https://www.grid.ac/institutes/grid.426543.2 schema:alternateName Steklov Mathematical Institute
    102 schema:name Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
    103 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...