The 1/N-Expansion for Flag-Manifold σ-Models View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-12

AUTHORS

D. V. Bykov

ABSTRACT

We derive the Feynman rules for the 1/N-expansion of the simplest σ-model in the class of models that we previously proposed. We consider the case where the target space is the flag manifold U(N)/(U(1) × U(1) × U(N − 2)).

PAGES

1691-1700

References to SciGraph publications

Journal

TITLE

Theoretical and Mathematical Physics

ISSUE

3

VOLUME

197

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0040577918120012

DOI

http://dx.doi.org/10.1134/s0040577918120012

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111224371


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "author": [
      {
        "affiliation": {
          "alternateName": "Steklov Mathematical Institute", 
          "id": "https://www.grid.ac/institutes/grid.426543.2", 
          "name": [
            "Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bykov", 
        "givenName": "D. V.", 
        "id": "sg:person.010147022050.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010147022050.32"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.geomphys.2008.07.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000645703"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-2693(80)91004-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003687525"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-2693(80)91004-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003687525"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-2693(78)90672-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008813972"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-2693(78)90672-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008813972"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nuclphysb.2015.11.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033179010"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(78)90432-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033308098"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(78)90432-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033308098"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nuclphysb.2015.03.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037201183"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physletb.2016.06.071", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038748335"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(78)90211-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040252308"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(78)90211-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040252308"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(82)90238-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044074890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(82)90238-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044074890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(79)90083-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047013654"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(79)90083-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047013654"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(79)90276-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047975883"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(79)90276-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047975883"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01609119", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052377673", 
          "https://doi.org/10.1007/bf01609119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01609119", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052377673", 
          "https://doi.org/10.1007/bf01609119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.23.1800", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060688652"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.23.1800", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060688652"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.25.452", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060689697"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.25.452", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060689697"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.27.825", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060690582"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.27.825", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060690582"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0040577917120029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100165327", 
          "https://doi.org/10.1134/s0040577917120029"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "We derive the Feynman rules for the 1/N-expansion of the simplest \u03c3-model in the class of models that we previously proposed. We consider the case where the target space is the flag manifold U(N)/(U(1) \u00d7 U(1) \u00d7 U(N \u2212 2)).", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s0040577918120012", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1327888", 
        "issn": [
          "0040-5779", 
          "2305-3135"
        ], 
        "name": "Theoretical and Mathematical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "197"
      }
    ], 
    "name": "The 1/N-Expansion for Flag-Manifold \u03c3-Models", 
    "pagination": "1691-1700", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "0d6ac92b0f8cee71a5e0531d00724d0029fdbe372f29e1e54f742baa8c2834a5"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0040577918120012"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111224371"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0040577918120012", 
      "https://app.dimensions.ai/details/publication/pub.1111224371"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:36", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000314_0000000314/records_55856_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1134%2FS0040577918120012"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0040577918120012'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0040577918120012'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0040577918120012'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0040577918120012'


 

This table displays all metadata directly associated to this object as RDF triples.

103 TRIPLES      20 PREDICATES      41 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0040577918120012 schema:author Ndcbe16c5dadf4e80b8ea5d51eaa309f3
2 schema:citation sg:pub.10.1007/bf01609119
3 sg:pub.10.1134/s0040577917120029
4 https://doi.org/10.1016/0370-2693(78)90672-x
5 https://doi.org/10.1016/0370-2693(80)91004-7
6 https://doi.org/10.1016/0550-3213(78)90211-0
7 https://doi.org/10.1016/0550-3213(78)90432-7
8 https://doi.org/10.1016/0550-3213(79)90083-x
9 https://doi.org/10.1016/0550-3213(79)90276-1
10 https://doi.org/10.1016/0550-3213(82)90238-3
11 https://doi.org/10.1016/j.geomphys.2008.07.010
12 https://doi.org/10.1016/j.nuclphysb.2015.03.005
13 https://doi.org/10.1016/j.nuclphysb.2015.11.015
14 https://doi.org/10.1016/j.physletb.2016.06.071
15 https://doi.org/10.1103/physrevd.23.1800
16 https://doi.org/10.1103/physrevd.25.452
17 https://doi.org/10.1103/physrevd.27.825
18 schema:datePublished 2018-12
19 schema:datePublishedReg 2018-12-01
20 schema:description We derive the Feynman rules for the 1/N-expansion of the simplest σ-model in the class of models that we previously proposed. We consider the case where the target space is the flag manifold U(N)/(U(1) × U(1) × U(N − 2)).
21 schema:genre research_article
22 schema:inLanguage en
23 schema:isAccessibleForFree false
24 schema:isPartOf N3c9e7f90a2b1405a9b5f9214c058d764
25 Ncf10be1764e940a49045e4e787252a9c
26 sg:journal.1327888
27 schema:name The 1/N-Expansion for Flag-Manifold σ-Models
28 schema:pagination 1691-1700
29 schema:productId Nb61fdaec72eb4525a84d21bb57ad7976
30 Nd248bc3ed5bf4d13a0cec3d8c629a4df
31 Nf795f726ac79495fa633b8b4b9de74c3
32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111224371
33 https://doi.org/10.1134/s0040577918120012
34 schema:sdDatePublished 2019-04-11T08:36
35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
36 schema:sdPublisher N2f73ab23428c48d0ad9aa0c2e64240da
37 schema:url https://link.springer.com/10.1134%2FS0040577918120012
38 sgo:license sg:explorer/license/
39 sgo:sdDataset articles
40 rdf:type schema:ScholarlyArticle
41 N2f73ab23428c48d0ad9aa0c2e64240da schema:name Springer Nature - SN SciGraph project
42 rdf:type schema:Organization
43 N3c9e7f90a2b1405a9b5f9214c058d764 schema:volumeNumber 197
44 rdf:type schema:PublicationVolume
45 Nb61fdaec72eb4525a84d21bb57ad7976 schema:name readcube_id
46 schema:value 0d6ac92b0f8cee71a5e0531d00724d0029fdbe372f29e1e54f742baa8c2834a5
47 rdf:type schema:PropertyValue
48 Ncf10be1764e940a49045e4e787252a9c schema:issueNumber 3
49 rdf:type schema:PublicationIssue
50 Nd248bc3ed5bf4d13a0cec3d8c629a4df schema:name doi
51 schema:value 10.1134/s0040577918120012
52 rdf:type schema:PropertyValue
53 Ndcbe16c5dadf4e80b8ea5d51eaa309f3 rdf:first sg:person.010147022050.32
54 rdf:rest rdf:nil
55 Nf795f726ac79495fa633b8b4b9de74c3 schema:name dimensions_id
56 schema:value pub.1111224371
57 rdf:type schema:PropertyValue
58 sg:journal.1327888 schema:issn 0040-5779
59 2305-3135
60 schema:name Theoretical and Mathematical Physics
61 rdf:type schema:Periodical
62 sg:person.010147022050.32 schema:affiliation https://www.grid.ac/institutes/grid.426543.2
63 schema:familyName Bykov
64 schema:givenName D. V.
65 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010147022050.32
66 rdf:type schema:Person
67 sg:pub.10.1007/bf01609119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052377673
68 https://doi.org/10.1007/bf01609119
69 rdf:type schema:CreativeWork
70 sg:pub.10.1134/s0040577917120029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100165327
71 https://doi.org/10.1134/s0040577917120029
72 rdf:type schema:CreativeWork
73 https://doi.org/10.1016/0370-2693(78)90672-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1008813972
74 rdf:type schema:CreativeWork
75 https://doi.org/10.1016/0370-2693(80)91004-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003687525
76 rdf:type schema:CreativeWork
77 https://doi.org/10.1016/0550-3213(78)90211-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040252308
78 rdf:type schema:CreativeWork
79 https://doi.org/10.1016/0550-3213(78)90432-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033308098
80 rdf:type schema:CreativeWork
81 https://doi.org/10.1016/0550-3213(79)90083-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1047013654
82 rdf:type schema:CreativeWork
83 https://doi.org/10.1016/0550-3213(79)90276-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047975883
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1016/0550-3213(82)90238-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044074890
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1016/j.geomphys.2008.07.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000645703
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1016/j.nuclphysb.2015.03.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037201183
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1016/j.nuclphysb.2015.11.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033179010
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1016/j.physletb.2016.06.071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038748335
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1103/physrevd.23.1800 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060688652
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1103/physrevd.25.452 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060689697
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1103/physrevd.27.825 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060690582
100 rdf:type schema:CreativeWork
101 https://www.grid.ac/institutes/grid.426543.2 schema:alternateName Steklov Mathematical Institute
102 schema:name Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
103 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...