Fractional Hamiltonian Systems with Locally Defined Potentials View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-04

AUTHORS

A. Benhassine

ABSTRACT

We study solutions of the nonperiodic fractional Hamiltonian systems \[−tD∞α(−∞D∞αx(t))−L(t)x(t)+∇W(t,x(t))=0,x∈Hα(R,RN),\] where α ∈ (1/2, 1], t ∈ R, L(t) ∈ C(R,RN2 ), and −∞Dtα t and tDα∞ are the respective left and right Liouville–Weyl fractional derivatives of order α on the whole axis R. Using a new symmetric mountain pass theorem established by Kajikia, we prove the existence of infinitely many solutions for this system in the case where the matrix L(t) is not necessarily coercive nor uniformly positive definite and W(t, x) is defined only locally near the coordinate origin x = 0. The proved theorems significantly generalize and improve previously obtained results. We also give several illustrative examples. More... »

PAGES

563-571

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0040577918040086

DOI

http://dx.doi.org/10.1134/s0040577918040086

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1103829137


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Department of Mathematics, Higher Institute of Informatics and Mathematics, Monastir, Tunisia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Benhassine", 
        "givenName": "A.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0362-546x(94)00229-b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008556727"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jfa.2005.04.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009716538"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-1236(73)90051-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032792397"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0218127412500861", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062956494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/cbms/065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098722172"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-04", 
    "datePublishedReg": "2018-04-01", 
    "description": "We study solutions of the nonperiodic fractional Hamiltonian systems \\[\u2212tD\u221e\u03b1(\u2212\u221eD\u221e\u03b1x(t))\u2212L(t)x(t)+\u2207W(t,x(t))=0,x\u2208H\u03b1(R,RN),\\] where \u03b1 \u2208 (1/2, 1], t \u2208 R, L(t) \u2208 C(R,RN2 ), and \u2212\u221eDt\u03b1 t and tD\u03b1\u221e are the respective left and right Liouville\u2013Weyl fractional derivatives of order \u03b1 on the whole axis R. Using a new symmetric mountain pass theorem established by Kajikia, we prove the existence of infinitely many solutions for this system in the case where the matrix L(t) is not necessarily coercive nor uniformly positive definite and W(t, x) is defined only locally near the coordinate origin x = 0. The proved theorems significantly generalize and improve previously obtained results. We also give several illustrative examples.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s0040577918040086", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1327888", 
        "issn": [
          "0040-5779", 
          "2305-3135"
        ], 
        "name": "Theoretical and Mathematical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "195"
      }
    ], 
    "name": "Fractional Hamiltonian Systems with Locally Defined Potentials", 
    "pagination": "563-571", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "823fb0a9a8003995ed52f5142ae303ca9f0b8d10a8b055978403745e2deadebb"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0040577918040086"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1103829137"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0040577918040086", 
      "https://app.dimensions.ai/details/publication/pub.1103829137"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:05", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000494.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1134/S0040577918040086"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0040577918040086'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0040577918040086'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0040577918040086'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0040577918040086'


 

This table displays all metadata directly associated to this object as RDF triples.

74 TRIPLES      21 PREDICATES      32 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0040577918040086 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N094d7441f5f9492d9e4e02962fd221d1
4 schema:citation https://doi.org/10.1016/0022-1236(73)90051-7
5 https://doi.org/10.1016/0362-546x(94)00229-b
6 https://doi.org/10.1016/j.jfa.2005.04.005
7 https://doi.org/10.1090/cbms/065
8 https://doi.org/10.1142/s0218127412500861
9 schema:datePublished 2018-04
10 schema:datePublishedReg 2018-04-01
11 schema:description We study solutions of the nonperiodic fractional Hamiltonian systems \[−tD∞α(−∞D∞αx(t))−L(t)x(t)+∇W(t,x(t))=0,x∈Hα(R,RN),\] where α ∈ (1/2, 1], t ∈ R, L(t) ∈ C(R,RN2 ), and −∞Dtα t and tDα∞ are the respective left and right Liouville–Weyl fractional derivatives of order α on the whole axis R. Using a new symmetric mountain pass theorem established by Kajikia, we prove the existence of infinitely many solutions for this system in the case where the matrix L(t) is not necessarily coercive nor uniformly positive definite and W(t, x) is defined only locally near the coordinate origin x = 0. The proved theorems significantly generalize and improve previously obtained results. We also give several illustrative examples.
12 schema:genre research_article
13 schema:inLanguage en
14 schema:isAccessibleForFree false
15 schema:isPartOf Nb02812cc646045ba88393dfa52282e6f
16 Nedf38444cb9b41f4abb5c03829aac695
17 sg:journal.1327888
18 schema:name Fractional Hamiltonian Systems with Locally Defined Potentials
19 schema:pagination 563-571
20 schema:productId N678b020a0e454852a7e976122ca3fce9
21 Nc06f0f036aef462a9c576938b8186029
22 Neba7ae85254a4896b9fec7bffb678d3b
23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103829137
24 https://doi.org/10.1134/s0040577918040086
25 schema:sdDatePublished 2019-04-10T14:05
26 schema:sdLicense https://scigraph.springernature.com/explorer/license/
27 schema:sdPublisher Nddffb4356f1749deb75a61742af6938c
28 schema:url http://link.springer.com/10.1134/S0040577918040086
29 sgo:license sg:explorer/license/
30 sgo:sdDataset articles
31 rdf:type schema:ScholarlyArticle
32 N094d7441f5f9492d9e4e02962fd221d1 rdf:first N3aa627ee79fb40d3aa3514150363f7ce
33 rdf:rest rdf:nil
34 N3aa627ee79fb40d3aa3514150363f7ce schema:affiliation Nbe793694f73d45218872d213c8e251b8
35 schema:familyName Benhassine
36 schema:givenName A.
37 rdf:type schema:Person
38 N678b020a0e454852a7e976122ca3fce9 schema:name doi
39 schema:value 10.1134/s0040577918040086
40 rdf:type schema:PropertyValue
41 Nb02812cc646045ba88393dfa52282e6f schema:volumeNumber 195
42 rdf:type schema:PublicationVolume
43 Nbe793694f73d45218872d213c8e251b8 schema:name Department of Mathematics, Higher Institute of Informatics and Mathematics, Monastir, Tunisia
44 rdf:type schema:Organization
45 Nc06f0f036aef462a9c576938b8186029 schema:name dimensions_id
46 schema:value pub.1103829137
47 rdf:type schema:PropertyValue
48 Nddffb4356f1749deb75a61742af6938c schema:name Springer Nature - SN SciGraph project
49 rdf:type schema:Organization
50 Neba7ae85254a4896b9fec7bffb678d3b schema:name readcube_id
51 schema:value 823fb0a9a8003995ed52f5142ae303ca9f0b8d10a8b055978403745e2deadebb
52 rdf:type schema:PropertyValue
53 Nedf38444cb9b41f4abb5c03829aac695 schema:issueNumber 1
54 rdf:type schema:PublicationIssue
55 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
56 schema:name Mathematical Sciences
57 rdf:type schema:DefinedTerm
58 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
59 schema:name Pure Mathematics
60 rdf:type schema:DefinedTerm
61 sg:journal.1327888 schema:issn 0040-5779
62 2305-3135
63 schema:name Theoretical and Mathematical Physics
64 rdf:type schema:Periodical
65 https://doi.org/10.1016/0022-1236(73)90051-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032792397
66 rdf:type schema:CreativeWork
67 https://doi.org/10.1016/0362-546x(94)00229-b schema:sameAs https://app.dimensions.ai/details/publication/pub.1008556727
68 rdf:type schema:CreativeWork
69 https://doi.org/10.1016/j.jfa.2005.04.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009716538
70 rdf:type schema:CreativeWork
71 https://doi.org/10.1090/cbms/065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098722172
72 rdf:type schema:CreativeWork
73 https://doi.org/10.1142/s0218127412500861 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062956494
74 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...