Bound states of the Schrödinger operator of a system of three bosons on a lattice View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-07

AUTHORS

S. N. Lakaev, A. R. Khalmukhamedov, A. M. Khalkhuzhaev

ABSTRACT

We consider the Hamiltonian Hµ of a system of three identical quantum particles (bosons) moving on a d-dimensional lattice ℤd, d = 1, 2, and coupled by an attractive pairwise contact potential µ < 0. We prove that the number of bound states of the corresponding Schrödinger operator Hµ(K), \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K \in \mathbb{T}^d$$\end{document}, is finite and establish the location and structure of its essential spectrum. We show that the bound state decays exponentially at infinity and that the eigenvalue and the corresponding bound state as functions of the quasimomentum \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K \in \mathbb{T}^d$$\end{document} are regular. More... »

PAGES

994-1005

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0040577916070035

DOI

http://dx.doi.org/10.1134/s0040577916070035

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1003920600


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Samarkand State University, Samarkand, Uzbekistan", 
          "id": "http://www.grid.ac/institutes/grid.77443.33", 
          "name": [
            "Samarkand State University, Samarkand, Uzbekistan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lakaev", 
        "givenName": "S. N.", 
        "id": "sg:person.014651603551.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014651603551.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Samarkand State University, Samarkand, Uzbekistan", 
          "id": "http://www.grid.ac/institutes/grid.77443.33", 
          "name": [
            "Samarkand State University, Samarkand, Uzbekistan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Khalmukhamedov", 
        "givenName": "A. R.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Samarkand State University, Samarkand, Uzbekistan", 
          "id": "http://www.grid.ac/institutes/grid.77443.33", 
          "name": [
            "Samarkand State University, Samarkand, Uzbekistan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Khalkhuzhaev", 
        "givenName": "A. M.", 
        "id": "sg:person.015116440573.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015116440573.52"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02096734", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017389654", 
          "https://doi.org/10.1007/bf02096734"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04918", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000518607", 
          "https://doi.org/10.1038/nature04918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11232-012-0072-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034596241", 
          "https://doi.org/10.1007/s11232-012-0072-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01087534", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016488912", 
          "https://doi.org/10.1007/bf01087534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11232-012-0076-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014706643", 
          "https://doi.org/10.1007/s11232-012-0076-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1007466105600", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021848131", 
          "https://doi.org/10.1023/a:1007466105600"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00023-004-0181-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017127152", 
          "https://doi.org/10.1007/s00023-004-0181-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01019022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013455809", 
          "https://doi.org/10.1007/bf01019022"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-07", 
    "datePublishedReg": "2016-07-01", 
    "description": "We consider the Hamiltonian H\u00b5 of a system of three identical quantum particles (bosons) moving on a d-dimensional lattice \u2124d, d = 1, 2, and coupled by an attractive pairwise contact potential \u00b5 < 0. We prove that the number of bound states of the corresponding Schr\u00f6dinger operator H\u00b5(K), \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$K \\in \\mathbb{T}^d$$\\end{document}, is finite and establish the location and structure of its essential spectrum. We show that the bound state decays exponentially at infinity and that the eigenvalue and the corresponding bound state as functions of the quasimomentum \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$K \\in \\mathbb{T}^d$$\\end{document} are regular.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s0040577916070035", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1327888", 
        "issn": [
          "0040-5779", 
          "2305-3135"
        ], 
        "name": "Theoretical and Mathematical Physics", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "188"
      }
    ], 
    "keywords": [
      "Schr\u00f6dinger operators", 
      "identical quantum particles", 
      "quantum particle", 
      "dimensional lattice", 
      "pairwise contact potentials", 
      "corresponding Schr\u00f6dinger operator", 
      "essential spectrum", 
      "lattice", 
      "operators", 
      "Hamiltonian", 
      "contact potential", 
      "infinity", 
      "eigenvalues", 
      "quasimomentum", 
      "system", 
      "state", 
      "bosons", 
      "particles", 
      "number", 
      "structure", 
      "spectra", 
      "state decay", 
      "decay", 
      "function", 
      "potential", 
      "location", 
      "attractive pairwise contact potential"
    ], 
    "name": "Bound states of the Schr\u00f6dinger operator of a system of three bosons on a lattice", 
    "pagination": "994-1005", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1003920600"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0040577916070035"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0040577916070035", 
      "https://app.dimensions.ai/details/publication/pub.1003920600"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:38", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_685.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s0040577916070035"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0040577916070035'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0040577916070035'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0040577916070035'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0040577916070035'


 

This table displays all metadata directly associated to this object as RDF triples.

130 TRIPLES      22 PREDICATES      61 URIs      45 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0040577916070035 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N3140c8e7a38140769d6b0c4b14fea3cc
4 schema:citation sg:pub.10.1007/bf01019022
5 sg:pub.10.1007/bf01087534
6 sg:pub.10.1007/bf02096734
7 sg:pub.10.1007/s00023-004-0181-9
8 sg:pub.10.1007/s11232-012-0072-z
9 sg:pub.10.1007/s11232-012-0076-8
10 sg:pub.10.1023/a:1007466105600
11 sg:pub.10.1038/nature04918
12 schema:datePublished 2016-07
13 schema:datePublishedReg 2016-07-01
14 schema:description We consider the Hamiltonian Hµ of a system of three identical quantum particles (bosons) moving on a d-dimensional lattice ℤd, d = 1, 2, and coupled by an attractive pairwise contact potential µ < 0. We prove that the number of bound states of the corresponding Schrödinger operator Hµ(K), \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K \in \mathbb{T}^d$$\end{document}, is finite and establish the location and structure of its essential spectrum. We show that the bound state decays exponentially at infinity and that the eigenvalue and the corresponding bound state as functions of the quasimomentum \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K \in \mathbb{T}^d$$\end{document} are regular.
15 schema:genre article
16 schema:inLanguage en
17 schema:isAccessibleForFree true
18 schema:isPartOf N2414d17602f4400fa7cacd41127955b9
19 N8e36b12157c84252bd0a0bf06dbc6121
20 sg:journal.1327888
21 schema:keywords Hamiltonian
22 Schrödinger operators
23 attractive pairwise contact potential
24 bosons
25 contact potential
26 corresponding Schrödinger operator
27 decay
28 dimensional lattice
29 eigenvalues
30 essential spectrum
31 function
32 identical quantum particles
33 infinity
34 lattice
35 location
36 number
37 operators
38 pairwise contact potentials
39 particles
40 potential
41 quantum particle
42 quasimomentum
43 spectra
44 state
45 state decay
46 structure
47 system
48 schema:name Bound states of the Schrödinger operator of a system of three bosons on a lattice
49 schema:pagination 994-1005
50 schema:productId Nd367cae85bb44b82929ee54c7e5ed7b2
51 Nda5379fc7fa34d54bb6259f9803c011a
52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003920600
53 https://doi.org/10.1134/s0040577916070035
54 schema:sdDatePublished 2022-01-01T18:38
55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
56 schema:sdPublisher Ne2696f6624ba4216b93d0ea4f57baf27
57 schema:url https://doi.org/10.1134/s0040577916070035
58 sgo:license sg:explorer/license/
59 sgo:sdDataset articles
60 rdf:type schema:ScholarlyArticle
61 N1d8bb2ee2bd54d99881cfe57a8ccf4e3 schema:affiliation grid-institutes:grid.77443.33
62 schema:familyName Khalmukhamedov
63 schema:givenName A. R.
64 rdf:type schema:Person
65 N2414d17602f4400fa7cacd41127955b9 schema:volumeNumber 188
66 rdf:type schema:PublicationVolume
67 N3140c8e7a38140769d6b0c4b14fea3cc rdf:first sg:person.014651603551.32
68 rdf:rest Nb3ccdaac6d98498f8b3d75e50f6f954c
69 N75fd175c12f74fa29df0c3b0bbb2b7a6 rdf:first sg:person.015116440573.52
70 rdf:rest rdf:nil
71 N8e36b12157c84252bd0a0bf06dbc6121 schema:issueNumber 1
72 rdf:type schema:PublicationIssue
73 Nb3ccdaac6d98498f8b3d75e50f6f954c rdf:first N1d8bb2ee2bd54d99881cfe57a8ccf4e3
74 rdf:rest N75fd175c12f74fa29df0c3b0bbb2b7a6
75 Nd367cae85bb44b82929ee54c7e5ed7b2 schema:name dimensions_id
76 schema:value pub.1003920600
77 rdf:type schema:PropertyValue
78 Nda5379fc7fa34d54bb6259f9803c011a schema:name doi
79 schema:value 10.1134/s0040577916070035
80 rdf:type schema:PropertyValue
81 Ne2696f6624ba4216b93d0ea4f57baf27 schema:name Springer Nature - SN SciGraph project
82 rdf:type schema:Organization
83 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
84 schema:name Mathematical Sciences
85 rdf:type schema:DefinedTerm
86 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
87 schema:name Pure Mathematics
88 rdf:type schema:DefinedTerm
89 sg:journal.1327888 schema:issn 0040-5779
90 2305-3135
91 schema:name Theoretical and Mathematical Physics
92 schema:publisher Pleiades Publishing
93 rdf:type schema:Periodical
94 sg:person.014651603551.32 schema:affiliation grid-institutes:grid.77443.33
95 schema:familyName Lakaev
96 schema:givenName S. N.
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014651603551.32
98 rdf:type schema:Person
99 sg:person.015116440573.52 schema:affiliation grid-institutes:grid.77443.33
100 schema:familyName Khalkhuzhaev
101 schema:givenName A. M.
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015116440573.52
103 rdf:type schema:Person
104 sg:pub.10.1007/bf01019022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013455809
105 https://doi.org/10.1007/bf01019022
106 rdf:type schema:CreativeWork
107 sg:pub.10.1007/bf01087534 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016488912
108 https://doi.org/10.1007/bf01087534
109 rdf:type schema:CreativeWork
110 sg:pub.10.1007/bf02096734 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017389654
111 https://doi.org/10.1007/bf02096734
112 rdf:type schema:CreativeWork
113 sg:pub.10.1007/s00023-004-0181-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017127152
114 https://doi.org/10.1007/s00023-004-0181-9
115 rdf:type schema:CreativeWork
116 sg:pub.10.1007/s11232-012-0072-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1034596241
117 https://doi.org/10.1007/s11232-012-0072-z
118 rdf:type schema:CreativeWork
119 sg:pub.10.1007/s11232-012-0076-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014706643
120 https://doi.org/10.1007/s11232-012-0076-8
121 rdf:type schema:CreativeWork
122 sg:pub.10.1023/a:1007466105600 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021848131
123 https://doi.org/10.1023/a:1007466105600
124 rdf:type schema:CreativeWork
125 sg:pub.10.1038/nature04918 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000518607
126 https://doi.org/10.1038/nature04918
127 rdf:type schema:CreativeWork
128 grid-institutes:grid.77443.33 schema:alternateName Samarkand State University, Samarkand, Uzbekistan
129 schema:name Samarkand State University, Samarkand, Uzbekistan
130 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...