Nanodispersed Suspensions of Zeolite Catalysts for Converting Dimethyl Ether into Olefins View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-01

AUTHORS

N. V. Kolesnichenko, O. V. Yashina, N. N. Ezhova, G. N. Bondarenko, S. N. Khadzhiev

ABSTRACT

Nanodispersed suspensions that are effective in DME conversion and stable in the reaction zone in a three-phase system (slurry reactor) are obtained from MFI zeolite commercial samples (TsVM, IK-17-1, and CBV) in liquid media via ultrasonic treatment (UST). It is found that the dispersion medium, in which ultrasound affects zeolite commercial sample, has a large influence on particle size in the suspension. UST in the aqueous medium produces zeolite nanoparticles smaller than 50 nm, while larger particles of MFI zeolite samples form in silicone or hydrocarbon oils. Spectral and adsorption data show that when zeolites undergo UST in an aqueous medium, the acid sites are redistributed on the zeolite surface and the specific surface area of the mesopores increases. Preliminary UST in aqueous media of zeolite commercial samples (TsVM, IK-17-1, and CBV) affects the catalytic properties of MFI zeolite nanodispersed suspensions. The selectivity of samples when paraffins and olefins form is largely due to superacid sites consisting of OH groups of hydroxonium ion H3O+. More... »

PAGES

118-123

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0036024418010120

DOI

http://dx.doi.org/10.1134/s0036024418010120

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1101264380


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 117912, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kolesnichenko", 
        "givenName": "N. V.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 117912, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yashina", 
        "givenName": "O. V.", 
        "id": "sg:person.014247547105.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014247547105.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 117912, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ezhova", 
        "givenName": "N. N.", 
        "id": "sg:person.011657534605.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011657534605.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 117912, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bondarenko", 
        "givenName": "G. N.", 
        "id": "sg:person.016522422357.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016522422357.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 117912, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Khadzhiev", 
        "givenName": "S. N.", 
        "id": "sg:person.01332170507.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01332170507.75"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1134/s096554411101004x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000447181", 
          "https://doi.org/10.1134/s096554411101004x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s096554411102006x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001999816", 
          "https://doi.org/10.1134/s096554411102006x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0023158407060043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002979307", 
          "https://doi.org/10.1134/s0023158407060043"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cattod.2013.11.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004070053"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s207005040903012x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006948554", 
          "https://doi.org/10.1134/s207005040903012x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s207005040903012x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006948554", 
          "https://doi.org/10.1134/s207005040903012x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1387-1811(00)00190-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013675755"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11144-015-0879-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022666957", 
          "https://doi.org/10.1007/s11144-015-0879-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.powtec.2003.10.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026591533"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.micromeso.2008.11.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028368609"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.micromeso.2008.06.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030959291"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.catcom.2008.03.046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031977080"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c3cy00320e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032863030"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cej.2010.12.087", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034347940"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.micromeso.2012.11.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034509524"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c3gc41302k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035018340"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10717-014-9580-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036837492", 
          "https://doi.org/10.1007/s10717-014-9580-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.micromeso.2008.11.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047664435"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0965544113050083", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049923593", 
          "https://doi.org/10.1134/s0965544113050083"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0965544116020079", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050399922", 
          "https://doi.org/10.1134/s0965544116020079"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apcata.2010.04.049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050524950"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0965544116090115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053942246", 
          "https://doi.org/10.1134/s0965544116090115"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0965544116090115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053942246", 
          "https://doi.org/10.1134/s0965544116090115"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ef200504p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055477824"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ef200504p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055477824"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1070/rc2007v076n02abeh003644", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058192865"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-01", 
    "datePublishedReg": "2018-01-01", 
    "description": "Nanodispersed suspensions that are effective in DME conversion and stable in the reaction zone in a three-phase system (slurry reactor) are obtained from MFI zeolite commercial samples (TsVM, IK-17-1, and CBV) in liquid media via ultrasonic treatment (UST). It is found that the dispersion medium, in which ultrasound affects zeolite commercial sample, has a large influence on particle size in the suspension. UST in the aqueous medium produces zeolite nanoparticles smaller than 50 nm, while larger particles of MFI zeolite samples form in silicone or hydrocarbon oils. Spectral and adsorption data show that when zeolites undergo UST in an aqueous medium, the acid sites are redistributed on the zeolite surface and the specific surface area of the mesopores increases. Preliminary UST in aqueous media of zeolite commercial samples (TsVM, IK-17-1, and CBV) affects the catalytic properties of MFI zeolite nanodispersed suspensions. The selectivity of samples when paraffins and olefins form is largely due to superacid sites consisting of OH groups of hydroxonium ion H3O+.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s0036024418010120", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1327871", 
        "issn": [
          "0036-0244", 
          "0044-4537"
        ], 
        "name": "Russian Journal of Physical Chemistry A", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "92"
      }
    ], 
    "name": "Nanodispersed Suspensions of Zeolite Catalysts for Converting Dimethyl Ether into Olefins", 
    "pagination": "118-123", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b0c86306555e1ed2bd45d064ec56c657cf15326513df04cac66e8660dd277d28"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0036024418010120"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1101264380"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0036024418010120", 
      "https://app.dimensions.ai/details/publication/pub.1101264380"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000348_0000000348/records_54325_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1134%2FS0036024418010120"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0036024418010120'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0036024418010120'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0036024418010120'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0036024418010120'


 

This table displays all metadata directly associated to this object as RDF triples.

166 TRIPLES      21 PREDICATES      50 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0036024418010120 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author N97e6c76495744ba7b68b0e60119b4f13
4 schema:citation sg:pub.10.1007/s10717-014-9580-7
5 sg:pub.10.1007/s11144-015-0879-3
6 sg:pub.10.1134/s0023158407060043
7 sg:pub.10.1134/s096554411101004x
8 sg:pub.10.1134/s096554411102006x
9 sg:pub.10.1134/s0965544113050083
10 sg:pub.10.1134/s0965544116020079
11 sg:pub.10.1134/s0965544116090115
12 sg:pub.10.1134/s207005040903012x
13 https://doi.org/10.1016/j.apcata.2010.04.049
14 https://doi.org/10.1016/j.catcom.2008.03.046
15 https://doi.org/10.1016/j.cattod.2013.11.015
16 https://doi.org/10.1016/j.cej.2010.12.087
17 https://doi.org/10.1016/j.micromeso.2008.06.017
18 https://doi.org/10.1016/j.micromeso.2008.11.005
19 https://doi.org/10.1016/j.micromeso.2008.11.029
20 https://doi.org/10.1016/j.micromeso.2012.11.011
21 https://doi.org/10.1016/j.powtec.2003.10.009
22 https://doi.org/10.1016/s1387-1811(00)00190-6
23 https://doi.org/10.1021/ef200504p
24 https://doi.org/10.1039/c3cy00320e
25 https://doi.org/10.1039/c3gc41302k
26 https://doi.org/10.1070/rc2007v076n02abeh003644
27 schema:datePublished 2018-01
28 schema:datePublishedReg 2018-01-01
29 schema:description Nanodispersed suspensions that are effective in DME conversion and stable in the reaction zone in a three-phase system (slurry reactor) are obtained from MFI zeolite commercial samples (TsVM, IK-17-1, and CBV) in liquid media via ultrasonic treatment (UST). It is found that the dispersion medium, in which ultrasound affects zeolite commercial sample, has a large influence on particle size in the suspension. UST in the aqueous medium produces zeolite nanoparticles smaller than 50 nm, while larger particles of MFI zeolite samples form in silicone or hydrocarbon oils. Spectral and adsorption data show that when zeolites undergo UST in an aqueous medium, the acid sites are redistributed on the zeolite surface and the specific surface area of the mesopores increases. Preliminary UST in aqueous media of zeolite commercial samples (TsVM, IK-17-1, and CBV) affects the catalytic properties of MFI zeolite nanodispersed suspensions. The selectivity of samples when paraffins and olefins form is largely due to superacid sites consisting of OH groups of hydroxonium ion H3O+.
30 schema:genre research_article
31 schema:inLanguage en
32 schema:isAccessibleForFree false
33 schema:isPartOf N85a72410628148bc82b84267679edddc
34 Na5328e7fbef446468e2d94babecbda2f
35 sg:journal.1327871
36 schema:name Nanodispersed Suspensions of Zeolite Catalysts for Converting Dimethyl Ether into Olefins
37 schema:pagination 118-123
38 schema:productId N6b50c475b70545dd9bcccd2ceab12299
39 Nbf00c1fe36eb4ba3bae4585d35a252b1
40 Ne464a0cf95784e11984bd5b46590f8f4
41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101264380
42 https://doi.org/10.1134/s0036024418010120
43 schema:sdDatePublished 2019-04-11T10:19
44 schema:sdLicense https://scigraph.springernature.com/explorer/license/
45 schema:sdPublisher N8fa5503b9d54485b94fe508e9a1e4159
46 schema:url https://link.springer.com/10.1134%2FS0036024418010120
47 sgo:license sg:explorer/license/
48 sgo:sdDataset articles
49 rdf:type schema:ScholarlyArticle
50 N0728b08d1e0e43a1b343d50150be2e3d rdf:first sg:person.01332170507.75
51 rdf:rest rdf:nil
52 N298e167da4ac41fdb48172f779932066 rdf:first sg:person.014247547105.24
53 rdf:rest N9772ad868b4443399214d108d1515931
54 N6b50c475b70545dd9bcccd2ceab12299 schema:name readcube_id
55 schema:value b0c86306555e1ed2bd45d064ec56c657cf15326513df04cac66e8660dd277d28
56 rdf:type schema:PropertyValue
57 N7bcfc4a1c0e64ae8a39f79e4976f4036 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
58 schema:familyName Kolesnichenko
59 schema:givenName N. V.
60 rdf:type schema:Person
61 N85a72410628148bc82b84267679edddc schema:volumeNumber 92
62 rdf:type schema:PublicationVolume
63 N8fa5503b9d54485b94fe508e9a1e4159 schema:name Springer Nature - SN SciGraph project
64 rdf:type schema:Organization
65 N9772ad868b4443399214d108d1515931 rdf:first sg:person.011657534605.58
66 rdf:rest Nd5f77745ca2b4203bf131464051a3d85
67 N97e6c76495744ba7b68b0e60119b4f13 rdf:first N7bcfc4a1c0e64ae8a39f79e4976f4036
68 rdf:rest N298e167da4ac41fdb48172f779932066
69 Na5328e7fbef446468e2d94babecbda2f schema:issueNumber 1
70 rdf:type schema:PublicationIssue
71 Nbf00c1fe36eb4ba3bae4585d35a252b1 schema:name dimensions_id
72 schema:value pub.1101264380
73 rdf:type schema:PropertyValue
74 Nd5f77745ca2b4203bf131464051a3d85 rdf:first sg:person.016522422357.89
75 rdf:rest N0728b08d1e0e43a1b343d50150be2e3d
76 Ne464a0cf95784e11984bd5b46590f8f4 schema:name doi
77 schema:value 10.1134/s0036024418010120
78 rdf:type schema:PropertyValue
79 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
80 schema:name Chemical Sciences
81 rdf:type schema:DefinedTerm
82 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
83 schema:name Physical Chemistry (incl. Structural)
84 rdf:type schema:DefinedTerm
85 sg:journal.1327871 schema:issn 0036-0244
86 0044-4537
87 schema:name Russian Journal of Physical Chemistry A
88 rdf:type schema:Periodical
89 sg:person.011657534605.58 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
90 schema:familyName Ezhova
91 schema:givenName N. N.
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011657534605.58
93 rdf:type schema:Person
94 sg:person.01332170507.75 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
95 schema:familyName Khadzhiev
96 schema:givenName S. N.
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01332170507.75
98 rdf:type schema:Person
99 sg:person.014247547105.24 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
100 schema:familyName Yashina
101 schema:givenName O. V.
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014247547105.24
103 rdf:type schema:Person
104 sg:person.016522422357.89 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
105 schema:familyName Bondarenko
106 schema:givenName G. N.
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016522422357.89
108 rdf:type schema:Person
109 sg:pub.10.1007/s10717-014-9580-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036837492
110 https://doi.org/10.1007/s10717-014-9580-7
111 rdf:type schema:CreativeWork
112 sg:pub.10.1007/s11144-015-0879-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022666957
113 https://doi.org/10.1007/s11144-015-0879-3
114 rdf:type schema:CreativeWork
115 sg:pub.10.1134/s0023158407060043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002979307
116 https://doi.org/10.1134/s0023158407060043
117 rdf:type schema:CreativeWork
118 sg:pub.10.1134/s096554411101004x schema:sameAs https://app.dimensions.ai/details/publication/pub.1000447181
119 https://doi.org/10.1134/s096554411101004x
120 rdf:type schema:CreativeWork
121 sg:pub.10.1134/s096554411102006x schema:sameAs https://app.dimensions.ai/details/publication/pub.1001999816
122 https://doi.org/10.1134/s096554411102006x
123 rdf:type schema:CreativeWork
124 sg:pub.10.1134/s0965544113050083 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049923593
125 https://doi.org/10.1134/s0965544113050083
126 rdf:type schema:CreativeWork
127 sg:pub.10.1134/s0965544116020079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050399922
128 https://doi.org/10.1134/s0965544116020079
129 rdf:type schema:CreativeWork
130 sg:pub.10.1134/s0965544116090115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053942246
131 https://doi.org/10.1134/s0965544116090115
132 rdf:type schema:CreativeWork
133 sg:pub.10.1134/s207005040903012x schema:sameAs https://app.dimensions.ai/details/publication/pub.1006948554
134 https://doi.org/10.1134/s207005040903012x
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/j.apcata.2010.04.049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050524950
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/j.catcom.2008.03.046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031977080
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/j.cattod.2013.11.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004070053
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/j.cej.2010.12.087 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034347940
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/j.micromeso.2008.06.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030959291
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/j.micromeso.2008.11.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028368609
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/j.micromeso.2008.11.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047664435
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/j.micromeso.2012.11.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034509524
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/j.powtec.2003.10.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026591533
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/s1387-1811(00)00190-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013675755
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1021/ef200504p schema:sameAs https://app.dimensions.ai/details/publication/pub.1055477824
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1039/c3cy00320e schema:sameAs https://app.dimensions.ai/details/publication/pub.1032863030
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1039/c3gc41302k schema:sameAs https://app.dimensions.ai/details/publication/pub.1035018340
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1070/rc2007v076n02abeh003644 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058192865
163 rdf:type schema:CreativeWork
164 https://www.grid.ac/institutes/grid.4886.2 schema:alternateName Russian Academy of Sciences
165 schema:name Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 117912, Moscow, Russia
166 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...