Vibrational spectroscopy studies of structural changes in lignin under microwave irradiation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-09

AUTHORS

O. V. Arapova, G. N. Bondarenko, A. V. Chistyakov, M. V. Tsodikov

ABSTRACT

Structural changes that occur in lignin surface-modified with nickel nanoparticles during microwave- assisted dry reforming (DR) are studied via vibrational spectroscopy. IR spectroscopy reveals that the nickel deposition has a considerable effect on the structural characteristics of lignin. It is found that nickel deposition from an acetate salt substantially reduces the intensity of absorption bands at 1700 cm−1. This finding suggests that Ni(2+) interacts mostly with formate groups, which are subsequently oxidized to carboxylate groups. It is shown that with the deposition of metallic nickel particles from a colloidal nickel solution in toluene prepared via metal vapor synthesis, the nickel particles do not interact with the surface functional groups of the lignin. Deep conversion of an organic mass of lignin by DR to form synthesis gas reduces the intensity of the absorption bands of the identified functional groups and raises the intensity of the absorption bands of the aromatic rings. Raman spectroscopy shows that during lignin conversion, the aromatic rings condense partially to form amorphized graphite. In operando studies reveal that the DR of nickel-modified lignin heated to 200–400°C results in the isolation of vanillic oxygenates that are probably intermediate products of reforming. More... »

PAGES

1717-1729

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0036024417090059

DOI

http://dx.doi.org/10.1134/s0036024417090059

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1091307062


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Arapova", 
        "givenName": "O. V.", 
        "id": "sg:person.016362165475.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016362165475.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bondarenko", 
        "givenName": "G. N.", 
        "id": "sg:person.016522422357.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016522422357.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chistyakov", 
        "givenName": "A. V.", 
        "id": "sg:person.013263727151.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013263727151.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tsodikov", 
        "givenName": "M. V.", 
        "id": "sg:person.015045563603.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015045563603.02"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0378-3820(88)90084-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001223569"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0378-3820(88)90084-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001223569"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biortech.2008.12.060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001603531"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ces.2007.02.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001938261"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0960-8524(00)00180-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002247816"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bmc.2005.01.049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003486258"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fuel.2004.06.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007877622"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ep.10391", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007880130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ep.10391", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007880130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jaap.2008.09.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009225919"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biortech.2011.11.121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010596775"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0016-2361(96)00036-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010704921"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chemosphere.2007.10.061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011275004"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c5gc01054c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012368961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jaap.2015.02.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014954759"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ssc.2007.03.052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018103421"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cr900354u", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018311722"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cr900354u", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018311722"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bmc.2006.03.046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019540622"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rser.2012.12.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021652825"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0008-6223(01)00128-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028320007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/b:phyt.0000046173.38194.ba", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029578185", 
          "https://doi.org/10.1023/b:phyt.0000046173.38194.ba"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jaap.2013.05.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032465101"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0165-2370(99)00082-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037804527"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2007/76730", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037963081"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mencom.2016.04.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038934695"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.3103/s0361521912020115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038969764", 
          "https://doi.org/10.3103/s0361521912020115"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.progpolymsci.2013.11.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041728983"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apcata.2009.03.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050934115"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cej.2016.02.028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051634612"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cattod.2008.12.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052820058"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10600-008-9009-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052923508", 
          "https://doi.org/10.1007/s10600-008-9009-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10600-008-9009-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052923508", 
          "https://doi.org/10.1007/s10600-008-9009-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ef100363c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055477146"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ef100363c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055477146"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ef8007773", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055481723"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ef8007773", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055481723"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ie070085d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055600934"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ie070085d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055600934"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-09", 
    "datePublishedReg": "2017-09-01", 
    "description": "Structural changes that occur in lignin surface-modified with nickel nanoparticles during microwave- assisted dry reforming (DR) are studied via vibrational spectroscopy. IR spectroscopy reveals that the nickel deposition has a considerable effect on the structural characteristics of lignin. It is found that nickel deposition from an acetate salt substantially reduces the intensity of absorption bands at 1700 cm\u22121. This finding suggests that Ni(2+) interacts mostly with formate groups, which are subsequently oxidized to carboxylate groups. It is shown that with the deposition of metallic nickel particles from a colloidal nickel solution in toluene prepared via metal vapor synthesis, the nickel particles do not interact with the surface functional groups of the lignin. Deep conversion of an organic mass of lignin by DR to form synthesis gas reduces the intensity of the absorption bands of the identified functional groups and raises the intensity of the absorption bands of the aromatic rings. Raman spectroscopy shows that during lignin conversion, the aromatic rings condense partially to form amorphized graphite. In operando studies reveal that the DR of nickel-modified lignin heated to 200\u2013400\u00b0C results in the isolation of vanillic oxygenates that are probably intermediate products of reforming.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s0036024417090059", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1327871", 
        "issn": [
          "0036-0244", 
          "0044-4537"
        ], 
        "name": "Russian Journal of Physical Chemistry A", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "9", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "91"
      }
    ], 
    "name": "Vibrational spectroscopy studies of structural changes in lignin under microwave irradiation", 
    "pagination": "1717-1729", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3a651a950fddb0c9296919a8453a5f94739f03f8f52a3d1a46d5658275ccd61f"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0036024417090059"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1091307062"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0036024417090059", 
      "https://app.dimensions.ai/details/publication/pub.1091307062"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:51", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000484.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1134/S0036024417090059"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0036024417090059'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0036024417090059'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0036024417090059'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0036024417090059'


 

This table displays all metadata directly associated to this object as RDF triples.

181 TRIPLES      21 PREDICATES      59 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0036024417090059 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author Nfd5222a00cf345e28821210b162b1e32
4 schema:citation sg:pub.10.1007/s10600-008-9009-z
5 sg:pub.10.1023/b:phyt.0000046173.38194.ba
6 sg:pub.10.3103/s0361521912020115
7 https://doi.org/10.1002/ep.10391
8 https://doi.org/10.1016/0016-2361(96)00036-1
9 https://doi.org/10.1016/0378-3820(88)90084-7
10 https://doi.org/10.1016/j.apcata.2009.03.027
11 https://doi.org/10.1016/j.biortech.2008.12.060
12 https://doi.org/10.1016/j.biortech.2011.11.121
13 https://doi.org/10.1016/j.bmc.2005.01.049
14 https://doi.org/10.1016/j.bmc.2006.03.046
15 https://doi.org/10.1016/j.cattod.2008.12.021
16 https://doi.org/10.1016/j.cej.2016.02.028
17 https://doi.org/10.1016/j.ces.2007.02.018
18 https://doi.org/10.1016/j.chemosphere.2007.10.061
19 https://doi.org/10.1016/j.fuel.2004.06.023
20 https://doi.org/10.1016/j.jaap.2008.09.016
21 https://doi.org/10.1016/j.jaap.2013.05.018
22 https://doi.org/10.1016/j.jaap.2015.02.022
23 https://doi.org/10.1016/j.mencom.2016.04.002
24 https://doi.org/10.1016/j.progpolymsci.2013.11.004
25 https://doi.org/10.1016/j.rser.2012.12.022
26 https://doi.org/10.1016/j.ssc.2007.03.052
27 https://doi.org/10.1016/s0008-6223(01)00128-2
28 https://doi.org/10.1016/s0165-2370(99)00082-0
29 https://doi.org/10.1016/s0960-8524(00)00180-2
30 https://doi.org/10.1021/cr900354u
31 https://doi.org/10.1021/ef100363c
32 https://doi.org/10.1021/ef8007773
33 https://doi.org/10.1021/ie070085d
34 https://doi.org/10.1039/c5gc01054c
35 https://doi.org/10.1155/2007/76730
36 schema:datePublished 2017-09
37 schema:datePublishedReg 2017-09-01
38 schema:description Structural changes that occur in lignin surface-modified with nickel nanoparticles during microwave- assisted dry reforming (DR) are studied via vibrational spectroscopy. IR spectroscopy reveals that the nickel deposition has a considerable effect on the structural characteristics of lignin. It is found that nickel deposition from an acetate salt substantially reduces the intensity of absorption bands at 1700 cm−1. This finding suggests that Ni(2+) interacts mostly with formate groups, which are subsequently oxidized to carboxylate groups. It is shown that with the deposition of metallic nickel particles from a colloidal nickel solution in toluene prepared via metal vapor synthesis, the nickel particles do not interact with the surface functional groups of the lignin. Deep conversion of an organic mass of lignin by DR to form synthesis gas reduces the intensity of the absorption bands of the identified functional groups and raises the intensity of the absorption bands of the aromatic rings. Raman spectroscopy shows that during lignin conversion, the aromatic rings condense partially to form amorphized graphite. In operando studies reveal that the DR of nickel-modified lignin heated to 200–400°C results in the isolation of vanillic oxygenates that are probably intermediate products of reforming.
39 schema:genre research_article
40 schema:inLanguage en
41 schema:isAccessibleForFree false
42 schema:isPartOf N6eb4919cdce146f7945b5fedbc5c5ca1
43 Ndd5884c1fb484a299b4e05e095be187f
44 sg:journal.1327871
45 schema:name Vibrational spectroscopy studies of structural changes in lignin under microwave irradiation
46 schema:pagination 1717-1729
47 schema:productId N1cba30d9fb4143f4836b16789ece93de
48 N5f66021d3c14433686220953673333a2
49 N681d0feef97b4287b27cf2ab71e97d2f
50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091307062
51 https://doi.org/10.1134/s0036024417090059
52 schema:sdDatePublished 2019-04-10T19:51
53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
54 schema:sdPublisher N3f1a11af856f447eb2ebf4ae59690663
55 schema:url http://link.springer.com/10.1134/S0036024417090059
56 sgo:license sg:explorer/license/
57 sgo:sdDataset articles
58 rdf:type schema:ScholarlyArticle
59 N153d275e32ee46d88a103f357f3b040f rdf:first sg:person.015045563603.02
60 rdf:rest rdf:nil
61 N1cba30d9fb4143f4836b16789ece93de schema:name readcube_id
62 schema:value 3a651a950fddb0c9296919a8453a5f94739f03f8f52a3d1a46d5658275ccd61f
63 rdf:type schema:PropertyValue
64 N3f1a11af856f447eb2ebf4ae59690663 schema:name Springer Nature - SN SciGraph project
65 rdf:type schema:Organization
66 N5f66021d3c14433686220953673333a2 schema:name dimensions_id
67 schema:value pub.1091307062
68 rdf:type schema:PropertyValue
69 N681d0feef97b4287b27cf2ab71e97d2f schema:name doi
70 schema:value 10.1134/s0036024417090059
71 rdf:type schema:PropertyValue
72 N6eb4919cdce146f7945b5fedbc5c5ca1 schema:volumeNumber 91
73 rdf:type schema:PublicationVolume
74 N87f1afd6f85b4cde9ee3617d598c8d30 rdf:first sg:person.016522422357.89
75 rdf:rest Ne53af2058fe942879fd8e08313f970ea
76 Ndd5884c1fb484a299b4e05e095be187f schema:issueNumber 9
77 rdf:type schema:PublicationIssue
78 Ne53af2058fe942879fd8e08313f970ea rdf:first sg:person.013263727151.12
79 rdf:rest N153d275e32ee46d88a103f357f3b040f
80 Nfd5222a00cf345e28821210b162b1e32 rdf:first sg:person.016362165475.00
81 rdf:rest N87f1afd6f85b4cde9ee3617d598c8d30
82 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
83 schema:name Chemical Sciences
84 rdf:type schema:DefinedTerm
85 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
86 schema:name Physical Chemistry (incl. Structural)
87 rdf:type schema:DefinedTerm
88 sg:journal.1327871 schema:issn 0036-0244
89 0044-4537
90 schema:name Russian Journal of Physical Chemistry A
91 rdf:type schema:Periodical
92 sg:person.013263727151.12 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
93 schema:familyName Chistyakov
94 schema:givenName A. V.
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013263727151.12
96 rdf:type schema:Person
97 sg:person.015045563603.02 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
98 schema:familyName Tsodikov
99 schema:givenName M. V.
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015045563603.02
101 rdf:type schema:Person
102 sg:person.016362165475.00 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
103 schema:familyName Arapova
104 schema:givenName O. V.
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016362165475.00
106 rdf:type schema:Person
107 sg:person.016522422357.89 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
108 schema:familyName Bondarenko
109 schema:givenName G. N.
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016522422357.89
111 rdf:type schema:Person
112 sg:pub.10.1007/s10600-008-9009-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1052923508
113 https://doi.org/10.1007/s10600-008-9009-z
114 rdf:type schema:CreativeWork
115 sg:pub.10.1023/b:phyt.0000046173.38194.ba schema:sameAs https://app.dimensions.ai/details/publication/pub.1029578185
116 https://doi.org/10.1023/b:phyt.0000046173.38194.ba
117 rdf:type schema:CreativeWork
118 sg:pub.10.3103/s0361521912020115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038969764
119 https://doi.org/10.3103/s0361521912020115
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1002/ep.10391 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007880130
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/0016-2361(96)00036-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010704921
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/0378-3820(88)90084-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001223569
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/j.apcata.2009.03.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050934115
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/j.biortech.2008.12.060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001603531
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/j.biortech.2011.11.121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010596775
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.bmc.2005.01.049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003486258
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.bmc.2006.03.046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019540622
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.cattod.2008.12.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052820058
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/j.cej.2016.02.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051634612
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.ces.2007.02.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001938261
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.chemosphere.2007.10.061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011275004
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.fuel.2004.06.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007877622
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.jaap.2008.09.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009225919
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.jaap.2013.05.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032465101
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.jaap.2015.02.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014954759
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/j.mencom.2016.04.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038934695
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/j.progpolymsci.2013.11.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041728983
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/j.rser.2012.12.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021652825
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/j.ssc.2007.03.052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018103421
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/s0008-6223(01)00128-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028320007
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/s0165-2370(99)00082-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037804527
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/s0960-8524(00)00180-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002247816
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1021/cr900354u schema:sameAs https://app.dimensions.ai/details/publication/pub.1018311722
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1021/ef100363c schema:sameAs https://app.dimensions.ai/details/publication/pub.1055477146
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1021/ef8007773 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055481723
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1021/ie070085d schema:sameAs https://app.dimensions.ai/details/publication/pub.1055600934
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1039/c5gc01054c schema:sameAs https://app.dimensions.ai/details/publication/pub.1012368961
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1155/2007/76730 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037963081
178 rdf:type schema:CreativeWork
179 https://www.grid.ac/institutes/grid.4886.2 schema:alternateName Russian Academy of Sciences
180 schema:name Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia
181 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...