Polar stationary phases based on poly(oligo ethylene glycol)diacrylates for capillary gas chromatography View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-07-15

AUTHORS

V. E. Shiryaeva, T. P. Popova, A. A. Korolev, A. Yu. Kanat’eva, A. A. Kurganov

ABSTRACT

New stationary phases for capillary columns in GC are synthesized and studied. The phases are prepared by depositing oligo(ethylene glycol)diacrylates on the column walls and subsequent polymerization (crosslinking) in the presence of peroxide initiators. It is shown that stationary phases based on monomers with molecular weights of 10 kDa or higher exhibit separation properties similar to those of conventional stationary phases based on polyethylene glycol (PEG); however, their thermal stability is higher because they have a higher degree of crosslinking and a more ordered structure of the crosslinked polymers than the respective parameters of phases based on native PEG. More... »

PAGES

1571-1579

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0036024417080325

DOI

http://dx.doi.org/10.1134/s0036024417080325

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1090673997


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0301", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Analytical Chemistry", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423490.8", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shiryaeva", 
        "givenName": "V. E.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423490.8", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Popova", 
        "givenName": "T. P.", 
        "id": "sg:person.01123707162.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01123707162.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423490.8", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Korolev", 
        "givenName": "A. A.", 
        "id": "sg:person.0761776377.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761776377.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423490.8", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kanat\u2019eva", 
        "givenName": "A. Yu.", 
        "id": "sg:person.010657112101.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010657112101.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423490.8", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kurganov", 
        "givenName": "A. A.", 
        "id": "sg:person.01240135562.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01240135562.44"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2017-07-15", 
    "datePublishedReg": "2017-07-15", 
    "description": "New stationary phases for capillary columns in GC are synthesized and studied. The phases are prepared by depositing oligo(ethylene glycol)diacrylates on the column walls and subsequent polymerization (crosslinking) in the presence of peroxide initiators. It is shown that stationary phases based on monomers with molecular weights of 10 kDa or higher exhibit separation properties similar to those of conventional stationary phases based on polyethylene glycol (PEG); however, their thermal stability is higher because they have a higher degree of crosslinking and a more ordered structure of the crosslinked polymers than the respective parameters of phases based on native PEG.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s0036024417080325", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1327871", 
        "issn": [
          "0036-0244", 
          "0044-4537"
        ], 
        "name": "Russian Journal of Physical Chemistry A", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "91"
      }
    ], 
    "keywords": [
      "stationary phase", 
      "polyethylene glycol", 
      "new stationary phase", 
      "conventional stationary phases", 
      "polar stationary phases", 
      "capillary gas chromatography", 
      "subsequent polymerization", 
      "separation properties", 
      "capillary column", 
      "peroxide initiator", 
      "gas chromatography", 
      "thermal stability", 
      "ordered structure", 
      "molecular weight", 
      "column wall", 
      "polymers", 
      "polymerization", 
      "phase", 
      "monomers", 
      "initiator", 
      "glycol", 
      "crosslinking", 
      "chromatography", 
      "ethylene", 
      "stability", 
      "column", 
      "properties", 
      "GC", 
      "structure", 
      "respective parameters", 
      "high degree", 
      "presence", 
      "parameters", 
      "weight", 
      "degree", 
      "wall", 
      "higher exhibit separation properties", 
      "exhibit separation properties", 
      "native PEG"
    ], 
    "name": "Polar stationary phases based on poly(oligo ethylene glycol)diacrylates for capillary gas chromatography", 
    "pagination": "1571-1579", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1090673997"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0036024417080325"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0036024417080325", 
      "https://app.dimensions.ai/details/publication/pub.1090673997"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_741.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s0036024417080325"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0036024417080325'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0036024417080325'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0036024417080325'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0036024417080325'


 

This table displays all metadata directly associated to this object as RDF triples.

124 TRIPLES      21 PREDICATES      64 URIs      56 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0036024417080325 schema:about anzsrc-for:03
2 anzsrc-for:0301
3 schema:author Ne340a6fbd7c64d3c8adab1d08d830767
4 schema:datePublished 2017-07-15
5 schema:datePublishedReg 2017-07-15
6 schema:description New stationary phases for capillary columns in GC are synthesized and studied. The phases are prepared by depositing oligo(ethylene glycol)diacrylates on the column walls and subsequent polymerization (crosslinking) in the presence of peroxide initiators. It is shown that stationary phases based on monomers with molecular weights of 10 kDa or higher exhibit separation properties similar to those of conventional stationary phases based on polyethylene glycol (PEG); however, their thermal stability is higher because they have a higher degree of crosslinking and a more ordered structure of the crosslinked polymers than the respective parameters of phases based on native PEG.
7 schema:genre article
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf N1eaca8be5470495ea5e68d7338df3f95
11 Nec31604c0d5c40bea0101c18ea87eb98
12 sg:journal.1327871
13 schema:keywords GC
14 capillary column
15 capillary gas chromatography
16 chromatography
17 column
18 column wall
19 conventional stationary phases
20 crosslinking
21 degree
22 ethylene
23 exhibit separation properties
24 gas chromatography
25 glycol
26 high degree
27 higher exhibit separation properties
28 initiator
29 molecular weight
30 monomers
31 native PEG
32 new stationary phase
33 ordered structure
34 parameters
35 peroxide initiator
36 phase
37 polar stationary phases
38 polyethylene glycol
39 polymerization
40 polymers
41 presence
42 properties
43 respective parameters
44 separation properties
45 stability
46 stationary phase
47 structure
48 subsequent polymerization
49 thermal stability
50 wall
51 weight
52 schema:name Polar stationary phases based on poly(oligo ethylene glycol)diacrylates for capillary gas chromatography
53 schema:pagination 1571-1579
54 schema:productId N70d978e62a99416fa6ac0acf5531b7ec
55 Nc585fd2844a84b608e9b9fb0684a81b6
56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090673997
57 https://doi.org/10.1134/s0036024417080325
58 schema:sdDatePublished 2021-12-01T19:39
59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
60 schema:sdPublisher N763ca6e131c24ec0abe3420d5c766002
61 schema:url https://doi.org/10.1134/s0036024417080325
62 sgo:license sg:explorer/license/
63 sgo:sdDataset articles
64 rdf:type schema:ScholarlyArticle
65 N1b6adeb72a1a4ab3982d982d4dcc34ef rdf:first sg:person.0761776377.67
66 rdf:rest Nf7ba3c228749491d993bbfd9eb6087d6
67 N1eaca8be5470495ea5e68d7338df3f95 schema:volumeNumber 91
68 rdf:type schema:PublicationVolume
69 N240bcabab7ac433a9e26d5c0ab59d77e schema:affiliation grid-institutes:grid.423490.8
70 schema:familyName Shiryaeva
71 schema:givenName V. E.
72 rdf:type schema:Person
73 N70d978e62a99416fa6ac0acf5531b7ec schema:name dimensions_id
74 schema:value pub.1090673997
75 rdf:type schema:PropertyValue
76 N763ca6e131c24ec0abe3420d5c766002 schema:name Springer Nature - SN SciGraph project
77 rdf:type schema:Organization
78 N847350b119654b5db39329098b40142d rdf:first sg:person.01123707162.15
79 rdf:rest N1b6adeb72a1a4ab3982d982d4dcc34ef
80 Nab8bb164cc6b4d0fa95dc5a7d2a87a4b rdf:first sg:person.01240135562.44
81 rdf:rest rdf:nil
82 Nc585fd2844a84b608e9b9fb0684a81b6 schema:name doi
83 schema:value 10.1134/s0036024417080325
84 rdf:type schema:PropertyValue
85 Ne340a6fbd7c64d3c8adab1d08d830767 rdf:first N240bcabab7ac433a9e26d5c0ab59d77e
86 rdf:rest N847350b119654b5db39329098b40142d
87 Nec31604c0d5c40bea0101c18ea87eb98 schema:issueNumber 8
88 rdf:type schema:PublicationIssue
89 Nf7ba3c228749491d993bbfd9eb6087d6 rdf:first sg:person.010657112101.27
90 rdf:rest Nab8bb164cc6b4d0fa95dc5a7d2a87a4b
91 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
92 schema:name Chemical Sciences
93 rdf:type schema:DefinedTerm
94 anzsrc-for:0301 schema:inDefinedTermSet anzsrc-for:
95 schema:name Analytical Chemistry
96 rdf:type schema:DefinedTerm
97 sg:journal.1327871 schema:issn 0036-0244
98 0044-4537
99 schema:name Russian Journal of Physical Chemistry A
100 schema:publisher Pleiades Publishing
101 rdf:type schema:Periodical
102 sg:person.010657112101.27 schema:affiliation grid-institutes:grid.423490.8
103 schema:familyName Kanat’eva
104 schema:givenName A. Yu.
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010657112101.27
106 rdf:type schema:Person
107 sg:person.01123707162.15 schema:affiliation grid-institutes:grid.423490.8
108 schema:familyName Popova
109 schema:givenName T. P.
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01123707162.15
111 rdf:type schema:Person
112 sg:person.01240135562.44 schema:affiliation grid-institutes:grid.423490.8
113 schema:familyName Kurganov
114 schema:givenName A. A.
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01240135562.44
116 rdf:type schema:Person
117 sg:person.0761776377.67 schema:affiliation grid-institutes:grid.423490.8
118 schema:familyName Korolev
119 schema:givenName A. A.
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761776377.67
121 rdf:type schema:Person
122 grid-institutes:grid.423490.8 schema:alternateName Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia
123 schema:name Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia
124 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...