Comparing kinetic curves in liquid chromatography View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-01

AUTHORS

A. A. Kurganov, A. Yu. Kanat’eva, E. E. Yakubenko, T. P. Popova, V. E. Shiryaeva

ABSTRACT

Five equations for kinetic curves which connect the number of theoretical plates N and time of analysis t0 for five different versions of optimization, depending on the parameters being varied (e.g., mobile phase flow rate, pressure drop, sorbent grain size), are obtained by means of mathematical modeling. It is found that a method based on the optimization of a sorbent grain size at fixed pressure is most suitable for the optimization of rapid separations. It is noted that the advantages of the method are limited by an area of relatively low efficiency, and the advantage of optimization is transferred to a method based on the optimization of both the sorbent grain size and the drop in pressure across a column in the area of high efficiency. More... »

PAGES

182-188

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0036024417010149

DOI

http://dx.doi.org/10.1134/s0036024417010149

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1083750225


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kurganov", 
        "givenName": "A. A.", 
        "id": "sg:person.01240135562.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01240135562.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kanat\u2019eva", 
        "givenName": "A. Yu.", 
        "id": "sg:person.010657112101.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010657112101.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yakubenko", 
        "givenName": "E. E.", 
        "id": "sg:person.01277702211.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01277702211.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Popova", 
        "givenName": "T. P.", 
        "id": "sg:person.01123707162.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01123707162.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shiryaeva", 
        "givenName": "V. E.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/jssc.201500595", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008163356"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0021-9673(97)00376-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011123791"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chroma.2015.01.053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020540712"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac504473p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026471763"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chroma.2010.02.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038373512"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac050160z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054996845"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac050160z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054996845"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac60183a005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055042679"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac60220a012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055050068"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac9001244", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055070987"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac9001244", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055070987"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-01", 
    "datePublishedReg": "2017-01-01", 
    "description": "Five equations for kinetic curves which connect the number of theoretical plates N and time of analysis t0 for five different versions of optimization, depending on the parameters being varied (e.g., mobile phase flow rate, pressure drop, sorbent grain size), are obtained by means of mathematical modeling. It is found that a method based on the optimization of a sorbent grain size at fixed pressure is most suitable for the optimization of rapid separations. It is noted that the advantages of the method are limited by an area of relatively low efficiency, and the advantage of optimization is transferred to a method based on the optimization of both the sorbent grain size and the drop in pressure across a column in the area of high efficiency.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s0036024417010149", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1327871", 
        "issn": [
          "0036-0244", 
          "0044-4537"
        ], 
        "name": "Russian Journal of Physical Chemistry A", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "91"
      }
    ], 
    "name": "Comparing kinetic curves in liquid chromatography", 
    "pagination": "182-188", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "687a001f71557649ee5ca41559689be1f65255126c2fc1dbe1dd7817755f1827"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0036024417010149"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1083750225"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0036024417010149", 
      "https://app.dimensions.ai/details/publication/pub.1083750225"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:06", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000367_0000000367/records_88217_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1134%2FS0036024417010149"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0036024417010149'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0036024417010149'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0036024417010149'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0036024417010149'


 

This table displays all metadata directly associated to this object as RDF triples.

115 TRIPLES      21 PREDICATES      36 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0036024417010149 schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author Nf01a2846b0e64f258592aa12822f935e
4 schema:citation https://doi.org/10.1002/jssc.201500595
5 https://doi.org/10.1016/j.chroma.2010.02.023
6 https://doi.org/10.1016/j.chroma.2015.01.053
7 https://doi.org/10.1016/s0021-9673(97)00376-2
8 https://doi.org/10.1021/ac050160z
9 https://doi.org/10.1021/ac504473p
10 https://doi.org/10.1021/ac60183a005
11 https://doi.org/10.1021/ac60220a012
12 https://doi.org/10.1021/ac9001244
13 schema:datePublished 2017-01
14 schema:datePublishedReg 2017-01-01
15 schema:description Five equations for kinetic curves which connect the number of theoretical plates N and time of analysis t0 for five different versions of optimization, depending on the parameters being varied (e.g., mobile phase flow rate, pressure drop, sorbent grain size), are obtained by means of mathematical modeling. It is found that a method based on the optimization of a sorbent grain size at fixed pressure is most suitable for the optimization of rapid separations. It is noted that the advantages of the method are limited by an area of relatively low efficiency, and the advantage of optimization is transferred to a method based on the optimization of both the sorbent grain size and the drop in pressure across a column in the area of high efficiency.
16 schema:genre research_article
17 schema:inLanguage en
18 schema:isAccessibleForFree false
19 schema:isPartOf Nbc89dae8bc7b41e1a5b2dc7648401c68
20 Ne7b6efed6c2e4efcb36bf4b89599588d
21 sg:journal.1327871
22 schema:name Comparing kinetic curves in liquid chromatography
23 schema:pagination 182-188
24 schema:productId N4e3d83fa57514578bb8677ce2298c2da
25 Na0c3cff6ac554668b27e7544b0cfed3e
26 Ndc13f195e34a476fadc19aa0852d6dcf
27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083750225
28 https://doi.org/10.1134/s0036024417010149
29 schema:sdDatePublished 2019-04-11T13:06
30 schema:sdLicense https://scigraph.springernature.com/explorer/license/
31 schema:sdPublisher Na8934ea3292e468ba83aa49c69def064
32 schema:url https://link.springer.com/10.1134%2FS0036024417010149
33 sgo:license sg:explorer/license/
34 sgo:sdDataset articles
35 rdf:type schema:ScholarlyArticle
36 N257f869d036f41a2ac9495b4dd45e438 rdf:first sg:person.010657112101.27
37 rdf:rest Ne50a9a0d4fdf4984ad22f2cf2aae12db
38 N455516702f3f403da3d7c712bdb19df3 rdf:first N8cef0795c14d4a90b6159fa3f8c06fdc
39 rdf:rest rdf:nil
40 N4e3d83fa57514578bb8677ce2298c2da schema:name doi
41 schema:value 10.1134/s0036024417010149
42 rdf:type schema:PropertyValue
43 N82066e693da34a74918e9d5f715c6781 rdf:first sg:person.01123707162.15
44 rdf:rest N455516702f3f403da3d7c712bdb19df3
45 N8cef0795c14d4a90b6159fa3f8c06fdc schema:affiliation https://www.grid.ac/institutes/grid.4886.2
46 schema:familyName Shiryaeva
47 schema:givenName V. E.
48 rdf:type schema:Person
49 Na0c3cff6ac554668b27e7544b0cfed3e schema:name readcube_id
50 schema:value 687a001f71557649ee5ca41559689be1f65255126c2fc1dbe1dd7817755f1827
51 rdf:type schema:PropertyValue
52 Na8934ea3292e468ba83aa49c69def064 schema:name Springer Nature - SN SciGraph project
53 rdf:type schema:Organization
54 Nbc89dae8bc7b41e1a5b2dc7648401c68 schema:issueNumber 1
55 rdf:type schema:PublicationIssue
56 Ndc13f195e34a476fadc19aa0852d6dcf schema:name dimensions_id
57 schema:value pub.1083750225
58 rdf:type schema:PropertyValue
59 Ne50a9a0d4fdf4984ad22f2cf2aae12db rdf:first sg:person.01277702211.03
60 rdf:rest N82066e693da34a74918e9d5f715c6781
61 Ne7b6efed6c2e4efcb36bf4b89599588d schema:volumeNumber 91
62 rdf:type schema:PublicationVolume
63 Nf01a2846b0e64f258592aa12822f935e rdf:first sg:person.01240135562.44
64 rdf:rest N257f869d036f41a2ac9495b4dd45e438
65 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
66 schema:name Mathematical Sciences
67 rdf:type schema:DefinedTerm
68 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
69 schema:name Numerical and Computational Mathematics
70 rdf:type schema:DefinedTerm
71 sg:journal.1327871 schema:issn 0036-0244
72 0044-4537
73 schema:name Russian Journal of Physical Chemistry A
74 rdf:type schema:Periodical
75 sg:person.010657112101.27 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
76 schema:familyName Kanat’eva
77 schema:givenName A. Yu.
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010657112101.27
79 rdf:type schema:Person
80 sg:person.01123707162.15 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
81 schema:familyName Popova
82 schema:givenName T. P.
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01123707162.15
84 rdf:type schema:Person
85 sg:person.01240135562.44 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
86 schema:familyName Kurganov
87 schema:givenName A. A.
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01240135562.44
89 rdf:type schema:Person
90 sg:person.01277702211.03 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
91 schema:familyName Yakubenko
92 schema:givenName E. E.
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01277702211.03
94 rdf:type schema:Person
95 https://doi.org/10.1002/jssc.201500595 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008163356
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1016/j.chroma.2010.02.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038373512
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1016/j.chroma.2015.01.053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020540712
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1016/s0021-9673(97)00376-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011123791
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1021/ac050160z schema:sameAs https://app.dimensions.ai/details/publication/pub.1054996845
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1021/ac504473p schema:sameAs https://app.dimensions.ai/details/publication/pub.1026471763
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1021/ac60183a005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055042679
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1021/ac60220a012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055050068
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1021/ac9001244 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055070987
112 rdf:type schema:CreativeWork
113 https://www.grid.ac/institutes/grid.4886.2 schema:alternateName Russian Academy of Sciences
114 schema:name Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia
115 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...