Effect of doping on photovoltaic characteristics of graphene View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-12

AUTHORS

Deepshikha

ABSTRACT

Chemical doping of CVD grown graphene by introducing PTSA (n-type) and NBD (p-type) dopants is explored. This type of doping is key building block for photovoltaic and optoelectronic devices. Doped graphene samples display (1) high transmittance in the visible and near-infrared spectrum and (2) tunable graphene sheet resistance and work function. Large area and uniform graphene films were produced by chemical vapor deposition on copper foils and transferred onto quartz as transparent substrates. For n doping, a solution of p-toluenesulfonic acid (PTSA) was first dropped and spin-coated on the graphene/quartz and then annealed at 100°C for 10 min to make graphene uniformly n-type. Subsequently, a bare graphene was transferred on another quartz substrate, a solution of 4-nitrobenzenediazonium tetrafluoroborate (NBD) was dropped and spin-coated on the surface of graphene and similarly annealed. As a result, the graphene was p and n doped on the different quartz substrates. Doped graphene samples were characterized by different techniques. Experimental results suggested that doped graphene sheets with tunable electrical resistance and high optical transparency can be incorporated into photovoltaics and optoelectronics devices. More... »

PAGES

2609-2615

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0036024416130069

DOI

http://dx.doi.org/10.1134/s0036024416130069

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1000876760


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Institute of Chemistry, Beijing National Laboratory for Molecular Sciences, Laboratory of Molecular Nanostructure and Nanotechnology, 100190, Beijing, P. R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Deepshikha", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1021/nl072838r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000422744"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl072838r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000422744"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04233", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001061831", 
          "https://doi.org/10.1038/nature04233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04233", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001061831", 
          "https://doi.org/10.1038/nature04233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04233", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001061831", 
          "https://doi.org/10.1038/nature04233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.97.187401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001174697"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.97.187401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001174697"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c2nr30994g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001210768"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c3tc30232f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001307237"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl0731872", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002634830"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl0731872", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002634830"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04235", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009714128", 
          "https://doi.org/10.1038/nature04235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04235", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009714128", 
          "https://doi.org/10.1038/nature04235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04235", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009714128", 
          "https://doi.org/10.1038/nature04235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1157996", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015876496"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nn203393d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015920599"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0957-4484/21/28/285205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016572428"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cphc.200800592", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017151876"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1102896", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019008412"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1156965", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019630779"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2012.71", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019943142", 
          "https://doi.org/10.1038/nnano.2012.71"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2010.132", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022328266", 
          "https://doi.org/10.1038/nnano.2010.132"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2010.132", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022328266", 
          "https://doi.org/10.1038/nnano.2010.132"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0957-4484/22/42/425701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022888654"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nn301199j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026096766"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms2464", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030717368", 
          "https://doi.org/10.1038/ncomms2464"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2010.186", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031313355", 
          "https://doi.org/10.1038/nphoton.2010.186"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2010.186", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031313355", 
          "https://doi.org/10.1038/nphoton.2010.186"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja105140e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036399363"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja105140e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036399363"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2008.199", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040606030", 
          "https://doi.org/10.1038/nnano.2008.199"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/smll.200901968", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043320959"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/smll.200901968", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043320959"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja8057327", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047098164"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja8057327", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047098164"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2011.318", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047141903", 
          "https://doi.org/10.1038/nphoton.2011.318"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys245", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048452401", 
          "https://doi.org/10.1038/nphys245"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys245", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048452401", 
          "https://doi.org/10.1038/nphys245"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.81.109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050408744"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.81.109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050408744"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1849", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052791836", 
          "https://doi.org/10.1038/nmat1849"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/am401119j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055143558"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jz201273r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056134179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jz201273r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056134179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nn1015874", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056222770"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.71.622", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060453259"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.71.622", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060453259"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-12", 
    "datePublishedReg": "2016-12-01", 
    "description": "Chemical doping of CVD grown graphene by introducing PTSA (n-type) and NBD (p-type) dopants is explored. This type of doping is key building block for photovoltaic and optoelectronic devices. Doped graphene samples display (1) high transmittance in the visible and near-infrared spectrum and (2) tunable graphene sheet resistance and work function. Large area and uniform graphene films were produced by chemical vapor deposition on copper foils and transferred onto quartz as transparent substrates. For n doping, a solution of p-toluenesulfonic acid (PTSA) was first dropped and spin-coated on the graphene/quartz and then annealed at 100\u00b0C for 10 min to make graphene uniformly n-type. Subsequently, a bare graphene was transferred on another quartz substrate, a solution of 4-nitrobenzenediazonium tetrafluoroborate (NBD) was dropped and spin-coated on the surface of graphene and similarly annealed. As a result, the graphene was p and n doped on the different quartz substrates. Doped graphene samples were characterized by different techniques. Experimental results suggested that doped graphene sheets with tunable electrical resistance and high optical transparency can be incorporated into photovoltaics and optoelectronics devices.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s0036024416130069", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1327871", 
        "issn": [
          "0036-0244", 
          "0044-4537"
        ], 
        "name": "Russian Journal of Physical Chemistry A", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "13", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "90"
      }
    ], 
    "name": "Effect of doping on photovoltaic characteristics of graphene", 
    "pagination": "2609-2615", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "042d28d178c735b770f27a4dc74c7ab545e08d8697f82197776b3a373b8afdc0"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0036024416130069"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1000876760"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0036024416130069", 
      "https://app.dimensions.ai/details/publication/pub.1000876760"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:59", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000365_0000000365/records_71698_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1134%2FS0036024416130069"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0036024416130069'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0036024416130069'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0036024416130069'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0036024416130069'


 

This table displays all metadata directly associated to this object as RDF triples.

161 TRIPLES      21 PREDICATES      58 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0036024416130069 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N1c3ed66e30374031a23f058dfa735ca1
4 schema:citation sg:pub.10.1038/nature04233
5 sg:pub.10.1038/nature04235
6 sg:pub.10.1038/ncomms2464
7 sg:pub.10.1038/nmat1849
8 sg:pub.10.1038/nnano.2008.199
9 sg:pub.10.1038/nnano.2010.132
10 sg:pub.10.1038/nnano.2012.71
11 sg:pub.10.1038/nphoton.2010.186
12 sg:pub.10.1038/nphoton.2011.318
13 sg:pub.10.1038/nphys245
14 https://doi.org/10.1002/cphc.200800592
15 https://doi.org/10.1002/smll.200901968
16 https://doi.org/10.1021/am401119j
17 https://doi.org/10.1021/ja105140e
18 https://doi.org/10.1021/ja8057327
19 https://doi.org/10.1021/jz201273r
20 https://doi.org/10.1021/nl072838r
21 https://doi.org/10.1021/nl0731872
22 https://doi.org/10.1021/nn1015874
23 https://doi.org/10.1021/nn203393d
24 https://doi.org/10.1021/nn301199j
25 https://doi.org/10.1039/c2nr30994g
26 https://doi.org/10.1039/c3tc30232f
27 https://doi.org/10.1088/0957-4484/21/28/285205
28 https://doi.org/10.1088/0957-4484/22/42/425701
29 https://doi.org/10.1103/physrev.71.622
30 https://doi.org/10.1103/physrevlett.97.187401
31 https://doi.org/10.1103/revmodphys.81.109
32 https://doi.org/10.1126/science.1102896
33 https://doi.org/10.1126/science.1156965
34 https://doi.org/10.1126/science.1157996
35 schema:datePublished 2016-12
36 schema:datePublishedReg 2016-12-01
37 schema:description Chemical doping of CVD grown graphene by introducing PTSA (n-type) and NBD (p-type) dopants is explored. This type of doping is key building block for photovoltaic and optoelectronic devices. Doped graphene samples display (1) high transmittance in the visible and near-infrared spectrum and (2) tunable graphene sheet resistance and work function. Large area and uniform graphene films were produced by chemical vapor deposition on copper foils and transferred onto quartz as transparent substrates. For n doping, a solution of p-toluenesulfonic acid (PTSA) was first dropped and spin-coated on the graphene/quartz and then annealed at 100°C for 10 min to make graphene uniformly n-type. Subsequently, a bare graphene was transferred on another quartz substrate, a solution of 4-nitrobenzenediazonium tetrafluoroborate (NBD) was dropped and spin-coated on the surface of graphene and similarly annealed. As a result, the graphene was p and n doped on the different quartz substrates. Doped graphene samples were characterized by different techniques. Experimental results suggested that doped graphene sheets with tunable electrical resistance and high optical transparency can be incorporated into photovoltaics and optoelectronics devices.
38 schema:genre research_article
39 schema:inLanguage en
40 schema:isAccessibleForFree false
41 schema:isPartOf N193805881b964c62bf87eb97cdd9cbea
42 N73cb830e6f4c4eee9b160ff1547165a8
43 sg:journal.1327871
44 schema:name Effect of doping on photovoltaic characteristics of graphene
45 schema:pagination 2609-2615
46 schema:productId N18e05e8a3d094cefaae8f0e2977238c0
47 N239f4a41524349e2bd6622850bfd8932
48 Ne8bc433065e443ad8cfa9e48d355cb51
49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000876760
50 https://doi.org/10.1134/s0036024416130069
51 schema:sdDatePublished 2019-04-11T12:59
52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
53 schema:sdPublisher Ndf29b2a30073468ea9d094db11ad3d2e
54 schema:url https://link.springer.com/10.1134%2FS0036024416130069
55 sgo:license sg:explorer/license/
56 sgo:sdDataset articles
57 rdf:type schema:ScholarlyArticle
58 N18e05e8a3d094cefaae8f0e2977238c0 schema:name dimensions_id
59 schema:value pub.1000876760
60 rdf:type schema:PropertyValue
61 N193805881b964c62bf87eb97cdd9cbea schema:issueNumber 13
62 rdf:type schema:PublicationIssue
63 N1c3ed66e30374031a23f058dfa735ca1 rdf:first N26c1469e521047b0a8a48343f92d9001
64 rdf:rest rdf:nil
65 N239f4a41524349e2bd6622850bfd8932 schema:name readcube_id
66 schema:value 042d28d178c735b770f27a4dc74c7ab545e08d8697f82197776b3a373b8afdc0
67 rdf:type schema:PropertyValue
68 N26c1469e521047b0a8a48343f92d9001 schema:affiliation Nfff2886014914938a10ff6b0fa64a67f
69 schema:familyName Deepshikha
70 rdf:type schema:Person
71 N73cb830e6f4c4eee9b160ff1547165a8 schema:volumeNumber 90
72 rdf:type schema:PublicationVolume
73 Ndf29b2a30073468ea9d094db11ad3d2e schema:name Springer Nature - SN SciGraph project
74 rdf:type schema:Organization
75 Ne8bc433065e443ad8cfa9e48d355cb51 schema:name doi
76 schema:value 10.1134/s0036024416130069
77 rdf:type schema:PropertyValue
78 Nfff2886014914938a10ff6b0fa64a67f schema:name Institute of Chemistry, Beijing National Laboratory for Molecular Sciences, Laboratory of Molecular Nanostructure and Nanotechnology, 100190, Beijing, P. R. China
79 rdf:type schema:Organization
80 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
81 schema:name Engineering
82 rdf:type schema:DefinedTerm
83 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
84 schema:name Materials Engineering
85 rdf:type schema:DefinedTerm
86 sg:journal.1327871 schema:issn 0036-0244
87 0044-4537
88 schema:name Russian Journal of Physical Chemistry A
89 rdf:type schema:Periodical
90 sg:pub.10.1038/nature04233 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001061831
91 https://doi.org/10.1038/nature04233
92 rdf:type schema:CreativeWork
93 sg:pub.10.1038/nature04235 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009714128
94 https://doi.org/10.1038/nature04235
95 rdf:type schema:CreativeWork
96 sg:pub.10.1038/ncomms2464 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030717368
97 https://doi.org/10.1038/ncomms2464
98 rdf:type schema:CreativeWork
99 sg:pub.10.1038/nmat1849 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052791836
100 https://doi.org/10.1038/nmat1849
101 rdf:type schema:CreativeWork
102 sg:pub.10.1038/nnano.2008.199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040606030
103 https://doi.org/10.1038/nnano.2008.199
104 rdf:type schema:CreativeWork
105 sg:pub.10.1038/nnano.2010.132 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022328266
106 https://doi.org/10.1038/nnano.2010.132
107 rdf:type schema:CreativeWork
108 sg:pub.10.1038/nnano.2012.71 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019943142
109 https://doi.org/10.1038/nnano.2012.71
110 rdf:type schema:CreativeWork
111 sg:pub.10.1038/nphoton.2010.186 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031313355
112 https://doi.org/10.1038/nphoton.2010.186
113 rdf:type schema:CreativeWork
114 sg:pub.10.1038/nphoton.2011.318 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047141903
115 https://doi.org/10.1038/nphoton.2011.318
116 rdf:type schema:CreativeWork
117 sg:pub.10.1038/nphys245 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048452401
118 https://doi.org/10.1038/nphys245
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1002/cphc.200800592 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017151876
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1002/smll.200901968 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043320959
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1021/am401119j schema:sameAs https://app.dimensions.ai/details/publication/pub.1055143558
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1021/ja105140e schema:sameAs https://app.dimensions.ai/details/publication/pub.1036399363
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1021/ja8057327 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047098164
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1021/jz201273r schema:sameAs https://app.dimensions.ai/details/publication/pub.1056134179
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1021/nl072838r schema:sameAs https://app.dimensions.ai/details/publication/pub.1000422744
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1021/nl0731872 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002634830
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1021/nn1015874 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056222770
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1021/nn203393d schema:sameAs https://app.dimensions.ai/details/publication/pub.1015920599
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1021/nn301199j schema:sameAs https://app.dimensions.ai/details/publication/pub.1026096766
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1039/c2nr30994g schema:sameAs https://app.dimensions.ai/details/publication/pub.1001210768
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1039/c3tc30232f schema:sameAs https://app.dimensions.ai/details/publication/pub.1001307237
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1088/0957-4484/21/28/285205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016572428
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1088/0957-4484/22/42/425701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022888654
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1103/physrev.71.622 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060453259
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1103/physrevlett.97.187401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001174697
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1103/revmodphys.81.109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050408744
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1126/science.1102896 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019008412
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1126/science.1156965 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019630779
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1126/science.1157996 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015876496
161 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...