High productivity chromatographic separations on monolithic capillary columns View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2013-03

AUTHORS

A. A. Korolev, V. E. Shiryaeva, T. P. Popova, A. A. Kurganov

ABSTRACT

The productivity of monolithic capillary columns based on silica gel and polymers of different polarities (divinylbenzene and ethyleneglycol dimethacrylate) is investigated using a model mixture of light hydrocarbons. It is shown that the productivity of a column is noticeably affected by the type of gas carrier. The highest productivity is observed when using carbon dioxide or dinitrogen monoxide as the gas carrier. The lowest productivity is observed when uisng hydrogen or helium. More... »

PAGES

508-511

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s003602441303014x

DOI

http://dx.doi.org/10.1134/s003602441303014x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1025599925


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Korolev", 
        "givenName": "A. A.", 
        "id": "sg:person.0761776377.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761776377.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shiryaeva", 
        "givenName": "V. E.", 
        "id": "sg:person.01055573762.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01055573762.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Popova", 
        "givenName": "T. P.", 
        "id": "sg:person.01123707162.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01123707162.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kurganov", 
        "givenName": "A. A.", 
        "id": "sg:person.01240135562.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01240135562.44"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0021-9673(99)00227-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007717736"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chroma.2007.05.090", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007885488"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0036024406070235", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010249195", 
          "https://doi.org/10.1134/s0036024406070235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chroma.2009.09.073", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015177030"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00503256", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019997293", 
          "https://doi.org/10.1007/bf00503256"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00503256", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019997293", 
          "https://doi.org/10.1007/bf00503256"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00503256", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019997293", 
          "https://doi.org/10.1007/bf00503256"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s106193480704003x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024235889", 
          "https://doi.org/10.1134/s106193480704003x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s106193480704003x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024235889", 
          "https://doi.org/10.1134/s106193480704003x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0021-9673(00)99330-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025728164"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s003602441009030x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034108625", 
          "https://doi.org/10.1134/s003602441009030x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0036024410080273", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035683998", 
          "https://doi.org/10.1134/s0036024410080273"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chroma.2007.07.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038289546"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02311199", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040664144", 
          "https://doi.org/10.1007/bf02311199"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prac.19783200317", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050153061"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0021-9673(00)82239-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051263364"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0021-9673(97)00377-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051537768"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac00251a011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054984982"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac60329a029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055064274"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/chromsci/6.8.404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059465966"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0036024408020258", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106770532", 
          "https://doi.org/10.1134/s0036024408020258"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-03", 
    "datePublishedReg": "2013-03-01", 
    "description": "The productivity of monolithic capillary columns based on silica gel and polymers of different polarities (divinylbenzene and ethyleneglycol dimethacrylate) is investigated using a model mixture of light hydrocarbons. It is shown that the productivity of a column is noticeably affected by the type of gas carrier. The highest productivity is observed when using carbon dioxide or dinitrogen monoxide as the gas carrier. The lowest productivity is observed when uisng hydrogen or helium.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s003602441303014x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1327871", 
        "issn": [
          "0036-0244", 
          "0044-4537"
        ], 
        "name": "Russian Journal of Physical Chemistry A", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "87"
      }
    ], 
    "name": "High productivity chromatographic separations on monolithic capillary columns", 
    "pagination": "508-511", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "79f5cf67ea8be6c59238da2b0830ba1285940422cda659e86de4144cac7bff5d"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s003602441303014x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1025599925"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s003602441303014x", 
      "https://app.dimensions.ai/details/publication/pub.1025599925"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T16:02", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000587.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1134/S003602441303014X"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s003602441303014x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s003602441303014x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s003602441303014x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s003602441303014x'


 

This table displays all metadata directly associated to this object as RDF triples.

143 TRIPLES      21 PREDICATES      45 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s003602441303014x schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author Nab66acd0df5f4ed8ac323932ea41b5cd
4 schema:citation sg:pub.10.1007/bf00503256
5 sg:pub.10.1007/bf02311199
6 sg:pub.10.1134/s0036024406070235
7 sg:pub.10.1134/s0036024408020258
8 sg:pub.10.1134/s0036024410080273
9 sg:pub.10.1134/s003602441009030x
10 sg:pub.10.1134/s106193480704003x
11 https://doi.org/10.1002/prac.19783200317
12 https://doi.org/10.1016/j.chroma.2007.05.090
13 https://doi.org/10.1016/j.chroma.2007.07.014
14 https://doi.org/10.1016/j.chroma.2009.09.073
15 https://doi.org/10.1016/s0021-9673(00)82239-6
16 https://doi.org/10.1016/s0021-9673(00)99330-0
17 https://doi.org/10.1016/s0021-9673(97)00377-4
18 https://doi.org/10.1016/s0021-9673(99)00227-7
19 https://doi.org/10.1021/ac00251a011
20 https://doi.org/10.1021/ac60329a029
21 https://doi.org/10.1093/chromsci/6.8.404
22 schema:datePublished 2013-03
23 schema:datePublishedReg 2013-03-01
24 schema:description The productivity of monolithic capillary columns based on silica gel and polymers of different polarities (divinylbenzene and ethyleneglycol dimethacrylate) is investigated using a model mixture of light hydrocarbons. It is shown that the productivity of a column is noticeably affected by the type of gas carrier. The highest productivity is observed when using carbon dioxide or dinitrogen monoxide as the gas carrier. The lowest productivity is observed when uisng hydrogen or helium.
25 schema:genre research_article
26 schema:inLanguage en
27 schema:isAccessibleForFree false
28 schema:isPartOf N213dd8434fc946a1bf3ba7480ad4c206
29 Nbdfe05479d4b4570a24988eb57da3ce4
30 sg:journal.1327871
31 schema:name High productivity chromatographic separations on monolithic capillary columns
32 schema:pagination 508-511
33 schema:productId N10f7d449ec3b45209693b9fc47fff8c8
34 Nc34daf3f4abe434c9ad5a40eadaca245
35 Nec6534036e7b4e22b3e1cc43337a7572
36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025599925
37 https://doi.org/10.1134/s003602441303014x
38 schema:sdDatePublished 2019-04-10T16:02
39 schema:sdLicense https://scigraph.springernature.com/explorer/license/
40 schema:sdPublisher N908f4387c7e243a4a0d5eed5685c5428
41 schema:url http://link.springer.com/10.1134/S003602441303014X
42 sgo:license sg:explorer/license/
43 sgo:sdDataset articles
44 rdf:type schema:ScholarlyArticle
45 N10f7d449ec3b45209693b9fc47fff8c8 schema:name doi
46 schema:value 10.1134/s003602441303014x
47 rdf:type schema:PropertyValue
48 N213dd8434fc946a1bf3ba7480ad4c206 schema:issueNumber 3
49 rdf:type schema:PublicationIssue
50 N908f4387c7e243a4a0d5eed5685c5428 schema:name Springer Nature - SN SciGraph project
51 rdf:type schema:Organization
52 Nab66acd0df5f4ed8ac323932ea41b5cd rdf:first sg:person.0761776377.67
53 rdf:rest Nc784eb7b5c5446b3b628b4cbfd9ea948
54 Nbdfe05479d4b4570a24988eb57da3ce4 schema:volumeNumber 87
55 rdf:type schema:PublicationVolume
56 Nc34daf3f4abe434c9ad5a40eadaca245 schema:name readcube_id
57 schema:value 79f5cf67ea8be6c59238da2b0830ba1285940422cda659e86de4144cac7bff5d
58 rdf:type schema:PropertyValue
59 Nc784eb7b5c5446b3b628b4cbfd9ea948 rdf:first sg:person.01055573762.38
60 rdf:rest Ndb7af7c7028448efb8cc362c944db59a
61 Ndb7af7c7028448efb8cc362c944db59a rdf:first sg:person.01123707162.15
62 rdf:rest Nff89bea3bcce4a968e2297670c45a545
63 Nec6534036e7b4e22b3e1cc43337a7572 schema:name dimensions_id
64 schema:value pub.1025599925
65 rdf:type schema:PropertyValue
66 Nff89bea3bcce4a968e2297670c45a545 rdf:first sg:person.01240135562.44
67 rdf:rest rdf:nil
68 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
69 schema:name Chemical Sciences
70 rdf:type schema:DefinedTerm
71 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
72 schema:name Physical Chemistry (incl. Structural)
73 rdf:type schema:DefinedTerm
74 sg:journal.1327871 schema:issn 0036-0244
75 0044-4537
76 schema:name Russian Journal of Physical Chemistry A
77 rdf:type schema:Periodical
78 sg:person.01055573762.38 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
79 schema:familyName Shiryaeva
80 schema:givenName V. E.
81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01055573762.38
82 rdf:type schema:Person
83 sg:person.01123707162.15 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
84 schema:familyName Popova
85 schema:givenName T. P.
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01123707162.15
87 rdf:type schema:Person
88 sg:person.01240135562.44 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
89 schema:familyName Kurganov
90 schema:givenName A. A.
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01240135562.44
92 rdf:type schema:Person
93 sg:person.0761776377.67 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
94 schema:familyName Korolev
95 schema:givenName A. A.
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761776377.67
97 rdf:type schema:Person
98 sg:pub.10.1007/bf00503256 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019997293
99 https://doi.org/10.1007/bf00503256
100 rdf:type schema:CreativeWork
101 sg:pub.10.1007/bf02311199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040664144
102 https://doi.org/10.1007/bf02311199
103 rdf:type schema:CreativeWork
104 sg:pub.10.1134/s0036024406070235 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010249195
105 https://doi.org/10.1134/s0036024406070235
106 rdf:type schema:CreativeWork
107 sg:pub.10.1134/s0036024408020258 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106770532
108 https://doi.org/10.1134/s0036024408020258
109 rdf:type schema:CreativeWork
110 sg:pub.10.1134/s0036024410080273 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035683998
111 https://doi.org/10.1134/s0036024410080273
112 rdf:type schema:CreativeWork
113 sg:pub.10.1134/s003602441009030x schema:sameAs https://app.dimensions.ai/details/publication/pub.1034108625
114 https://doi.org/10.1134/s003602441009030x
115 rdf:type schema:CreativeWork
116 sg:pub.10.1134/s106193480704003x schema:sameAs https://app.dimensions.ai/details/publication/pub.1024235889
117 https://doi.org/10.1134/s106193480704003x
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1002/prac.19783200317 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050153061
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/j.chroma.2007.05.090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007885488
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/j.chroma.2007.07.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038289546
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/j.chroma.2009.09.073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015177030
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/s0021-9673(00)82239-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051263364
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/s0021-9673(00)99330-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025728164
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/s0021-9673(97)00377-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051537768
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/s0021-9673(99)00227-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007717736
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1021/ac00251a011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054984982
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1021/ac60329a029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055064274
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1093/chromsci/6.8.404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059465966
140 rdf:type schema:CreativeWork
141 https://www.grid.ac/institutes/grid.4886.2 schema:alternateName Russian Academy of Sciences
142 schema:name Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, Russia
143 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...