The influence of pressure on the separating properties of columns in gas chromatography View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2010-01

AUTHORS

A. A. Korolev, V. E. Shiryaeva, T. P. Popova, A. A. Kurganov

ABSTRACT

The Giddings model taking into account the dependence of the coefficients of the van Deemter equation on pressure was used to study changes in the efficiency of a hollow capillary column as the inlet and outlet carrier gas pressures changed. The observed dependence of height equivalent to a theoretical plate (HETP) in the coordinates of inlet and outlet pressures can be approximated by a surface having the shape of a folded sheet of paper, when minimum HETP values are situated along the bend line. Any surface section is actually a van Deemter curve in the corresponding coordinates. The dependence of the minimum HETP on inlet and outlet pressures, which determines the optimum parameters of column service, is of the greatest interest. It was shown that, over the range of pressures studied, the minimum HETP should monotonically decrease as the pressure increases. Experimental model verification showed close correspondence between the inlet and outlet pressures and the values predicted by the model. At the same time, the experimentally found improvement of the efficiency of the column was smaller than that predicted theoretically. Possible reasons for the discrepancy between theory and experiment are considered. More... »

PAGES

1432-1438

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0036024410080273

DOI

http://dx.doi.org/10.1134/s0036024410080273

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1035683998


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii pr. 29, 117912, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Korolev", 
        "givenName": "A. A.", 
        "id": "sg:person.0761776377.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761776377.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii pr. 29, 117912, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shiryaeva", 
        "givenName": "V. E.", 
        "id": "sg:person.016163553457.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016163553457.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii pr. 29, 117912, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Popova", 
        "givenName": "T. P.", 
        "id": "sg:person.01123707162.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01123707162.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii pr. 29, 117912, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kurganov", 
        "givenName": "A. A.", 
        "id": "sg:person.01240135562.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01240135562.44"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/180702b0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016342015", 
          "https://doi.org/10.1038/180702b0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0021-9673(00)95085-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051460865"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac60154a001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055038071"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac60163a043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055039375"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-01", 
    "datePublishedReg": "2010-01-01", 
    "description": "The Giddings model taking into account the dependence of the coefficients of the van Deemter equation on pressure was used to study changes in the efficiency of a hollow capillary column as the inlet and outlet carrier gas pressures changed. The observed dependence of height equivalent to a theoretical plate (HETP) in the coordinates of inlet and outlet pressures can be approximated by a surface having the shape of a folded sheet of paper, when minimum HETP values are situated along the bend line. Any surface section is actually a van Deemter curve in the corresponding coordinates. The dependence of the minimum HETP on inlet and outlet pressures, which determines the optimum parameters of column service, is of the greatest interest. It was shown that, over the range of pressures studied, the minimum HETP should monotonically decrease as the pressure increases. Experimental model verification showed close correspondence between the inlet and outlet pressures and the values predicted by the model. At the same time, the experimentally found improvement of the efficiency of the column was smaller than that predicted theoretically. Possible reasons for the discrepancy between theory and experiment are considered.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s0036024410080273", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1327871", 
        "issn": [
          "0036-0244", 
          "0044-4537"
        ], 
        "name": "Russian Journal of Physical Chemistry A", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "84"
      }
    ], 
    "name": "The influence of pressure on the separating properties of columns in gas chromatography", 
    "pagination": "1432-1438", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a9fc4e3aac6a9184f9abff5231d1e6d73363def32655002841088b1e1c7d5379"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0036024410080273"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1035683998"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0036024410080273", 
      "https://app.dimensions.ai/details/publication/pub.1035683998"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:05", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000506.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1134/S0036024410080273"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0036024410080273'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0036024410080273'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0036024410080273'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0036024410080273'


 

This table displays all metadata directly associated to this object as RDF triples.

95 TRIPLES      21 PREDICATES      31 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0036024410080273 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author Nb3baf664adce437dadcc9ecd81bff19d
4 schema:citation sg:pub.10.1038/180702b0
5 https://doi.org/10.1016/s0021-9673(00)95085-4
6 https://doi.org/10.1021/ac60154a001
7 https://doi.org/10.1021/ac60163a043
8 schema:datePublished 2010-01
9 schema:datePublishedReg 2010-01-01
10 schema:description The Giddings model taking into account the dependence of the coefficients of the van Deemter equation on pressure was used to study changes in the efficiency of a hollow capillary column as the inlet and outlet carrier gas pressures changed. The observed dependence of height equivalent to a theoretical plate (HETP) in the coordinates of inlet and outlet pressures can be approximated by a surface having the shape of a folded sheet of paper, when minimum HETP values are situated along the bend line. Any surface section is actually a van Deemter curve in the corresponding coordinates. The dependence of the minimum HETP on inlet and outlet pressures, which determines the optimum parameters of column service, is of the greatest interest. It was shown that, over the range of pressures studied, the minimum HETP should monotonically decrease as the pressure increases. Experimental model verification showed close correspondence between the inlet and outlet pressures and the values predicted by the model. At the same time, the experimentally found improvement of the efficiency of the column was smaller than that predicted theoretically. Possible reasons for the discrepancy between theory and experiment are considered.
11 schema:genre research_article
12 schema:inLanguage en
13 schema:isAccessibleForFree false
14 schema:isPartOf N8a3eb2a37fc24f899bf83103848aa8d4
15 Na67e407d15014bb4b7424b01b6b8d191
16 sg:journal.1327871
17 schema:name The influence of pressure on the separating properties of columns in gas chromatography
18 schema:pagination 1432-1438
19 schema:productId N3a3a66c600184805a69c7b0e713a17cb
20 Nab9cd8fe626d457fa916a20aeebd3f59
21 Nef0119478c724927944dd2b039ea7fda
22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035683998
23 https://doi.org/10.1134/s0036024410080273
24 schema:sdDatePublished 2019-04-11T01:05
25 schema:sdLicense https://scigraph.springernature.com/explorer/license/
26 schema:sdPublisher N83c5810b757b461e8f33b223442b40d4
27 schema:url http://link.springer.com/10.1134/S0036024410080273
28 sgo:license sg:explorer/license/
29 sgo:sdDataset articles
30 rdf:type schema:ScholarlyArticle
31 N3a3a66c600184805a69c7b0e713a17cb schema:name readcube_id
32 schema:value a9fc4e3aac6a9184f9abff5231d1e6d73363def32655002841088b1e1c7d5379
33 rdf:type schema:PropertyValue
34 N83c5810b757b461e8f33b223442b40d4 schema:name Springer Nature - SN SciGraph project
35 rdf:type schema:Organization
36 N8a3eb2a37fc24f899bf83103848aa8d4 schema:volumeNumber 84
37 rdf:type schema:PublicationVolume
38 N975b1e2cfde54a458edde711702aa889 rdf:first sg:person.01123707162.15
39 rdf:rest Nb0b27a608d5f44809f96fec95e863a31
40 Na67e407d15014bb4b7424b01b6b8d191 schema:issueNumber 8
41 rdf:type schema:PublicationIssue
42 Nab1d4848219c4eecbce6c8459c531c19 rdf:first sg:person.016163553457.07
43 rdf:rest N975b1e2cfde54a458edde711702aa889
44 Nab9cd8fe626d457fa916a20aeebd3f59 schema:name doi
45 schema:value 10.1134/s0036024410080273
46 rdf:type schema:PropertyValue
47 Nb0b27a608d5f44809f96fec95e863a31 rdf:first sg:person.01240135562.44
48 rdf:rest rdf:nil
49 Nb3baf664adce437dadcc9ecd81bff19d rdf:first sg:person.0761776377.67
50 rdf:rest Nab1d4848219c4eecbce6c8459c531c19
51 Nef0119478c724927944dd2b039ea7fda schema:name dimensions_id
52 schema:value pub.1035683998
53 rdf:type schema:PropertyValue
54 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
55 schema:name Chemical Sciences
56 rdf:type schema:DefinedTerm
57 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
58 schema:name Physical Chemistry (incl. Structural)
59 rdf:type schema:DefinedTerm
60 sg:journal.1327871 schema:issn 0036-0244
61 0044-4537
62 schema:name Russian Journal of Physical Chemistry A
63 rdf:type schema:Periodical
64 sg:person.01123707162.15 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
65 schema:familyName Popova
66 schema:givenName T. P.
67 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01123707162.15
68 rdf:type schema:Person
69 sg:person.01240135562.44 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
70 schema:familyName Kurganov
71 schema:givenName A. A.
72 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01240135562.44
73 rdf:type schema:Person
74 sg:person.016163553457.07 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
75 schema:familyName Shiryaeva
76 schema:givenName V. E.
77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016163553457.07
78 rdf:type schema:Person
79 sg:person.0761776377.67 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
80 schema:familyName Korolev
81 schema:givenName A. A.
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761776377.67
83 rdf:type schema:Person
84 sg:pub.10.1038/180702b0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016342015
85 https://doi.org/10.1038/180702b0
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1016/s0021-9673(00)95085-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051460865
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1021/ac60154a001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055038071
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1021/ac60163a043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055039375
92 rdf:type schema:CreativeWork
93 https://www.grid.ac/institutes/grid.4886.2 schema:alternateName Russian Academy of Sciences
94 schema:name Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii pr. 29, 117912, Moscow, Russia
95 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...