The Influence of the Natures of the Carrier Gas and the Stationary Phase on the Separating Properties of Monolithic Capillary ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2008-02

AUTHORS

A. V. Kozin, A. A. Korolev, V. E. Shiryaeva, T. P. Popova, A. A. Kurganov

ABSTRACT

A model mixture of light hydrocarbons was used to study the separation capacity of monolithic capillary columns based on divinylbenzene with five different carrier gases, including helium, hydrogen, nitrogen, carbon dioxide, and nitrous oxide. The results were correlated with the previously obtained data on monolithic columns based on silica gel. It was shown that the influence of the nature of the carrier gas was weaker than for silica gel columns; the polymeric columns studied behaved similarly to hollow capillary columns with polymeric stationary phases and exhibited an efficiency gain of 20–30% along the series He < H2 < N2 ∼ N2O < CO2. Based on the minimum HETP (∼15 μm) obtained for the investigated monolithic columns under optimum conditions with N2O or CO2 as a carrier gas, the conclusion was drawn that the creation of divinylbenzene-based monolithic capillary columns with a high specific efficiency was possible. More... »

PAGES

276-281

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0036024408020258

DOI

http://dx.doi.org/10.1134/s0036024408020258

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1106770532


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0307", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Theoretical and Computational Chemistry", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii pr. 29, 117912, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423490.8", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii pr. 29, 117912, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kozin", 
        "givenName": "A. V.", 
        "id": "sg:person.014527423015.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014527423015.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii pr. 29, 117912, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423490.8", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii pr. 29, 117912, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Korolev", 
        "givenName": "A. A.", 
        "id": "sg:person.0761776377.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761776377.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii pr. 29, 117912, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423490.8", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii pr. 29, 117912, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shiryaeva", 
        "givenName": "V. E.", 
        "id": "sg:person.01055573762.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01055573762.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii pr. 29, 117912, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423490.8", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii pr. 29, 117912, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Popova", 
        "givenName": "T. P.", 
        "id": "sg:person.01123707162.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01123707162.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii pr. 29, 117912, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423490.8", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii pr. 29, 117912, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kurganov", 
        "givenName": "A. A.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02466395", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006331340", 
          "https://doi.org/10.1007/bf02466395"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-02", 
    "datePublishedReg": "2008-02-01", 
    "description": "A model mixture of light hydrocarbons was used to study the separation capacity of monolithic capillary columns based on divinylbenzene with five different carrier gases, including helium, hydrogen, nitrogen, carbon dioxide, and nitrous oxide. The results were correlated with the previously obtained data on monolithic columns based on silica gel. It was shown that the influence of the nature of the carrier gas was weaker than for silica gel columns; the polymeric columns studied behaved similarly to hollow capillary columns with polymeric stationary phases and exhibited an efficiency gain of 20\u201330% along the series He < H2 < N2 \u223c N2O < CO2. Based on the minimum HETP (\u223c15 \u03bcm) obtained for the investigated monolithic columns under optimum conditions with N2O or CO2 as a carrier gas, the conclusion was drawn that the creation of divinylbenzene-based monolithic capillary columns with a high specific efficiency was possible.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s0036024408020258", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1327871", 
        "issn": [
          "0036-0244", 
          "0044-4537"
        ], 
        "name": "Russian Journal of Physical Chemistry A", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "82"
      }
    ], 
    "keywords": [
      "monolithic capillary columns", 
      "capillary column", 
      "monolithic column", 
      "carrier gas", 
      "stationary phase", 
      "polymeric stationary phase", 
      "gas adsorption chromatography", 
      "silica gel column", 
      "different carrier gases", 
      "polymeric column", 
      "separating properties", 
      "silica gel", 
      "high specific efficiency", 
      "adsorption chromatography", 
      "separation capacity", 
      "gel column", 
      "light hydrocarbons", 
      "carrier gases", 
      "model mixture", 
      "minimum HETP", 
      "optimum conditions", 
      "carbon dioxide", 
      "column", 
      "N2O", 
      "divinylbenzene", 
      "CO2", 
      "gas", 
      "hydrogen", 
      "oxide", 
      "chromatography", 
      "nitrous oxide", 
      "H2", 
      "gel", 
      "hydrocarbons", 
      "N2", 
      "dioxide", 
      "phase", 
      "mixture", 
      "specific efficiency", 
      "nitrogen", 
      "HETP", 
      "gases", 
      "properties", 
      "nature", 
      "influence", 
      "efficiency", 
      "series", 
      "capacity", 
      "helium", 
      "conditions", 
      "results", 
      "creation", 
      "data", 
      "efficiency gains", 
      "conclusion", 
      "gain"
    ], 
    "name": "The Influence of the Natures of the Carrier Gas and the Stationary Phase on the Separating Properties of Monolithic Capillary Columns in Gas Adsorption Chromatography", 
    "pagination": "276-281", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1106770532"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0036024408020258"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0036024408020258", 
      "https://app.dimensions.ai/details/publication/pub.1106770532"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:18", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_462.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s0036024408020258"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0036024408020258'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0036024408020258'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0036024408020258'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0036024408020258'


 

This table displays all metadata directly associated to this object as RDF triples.

148 TRIPLES      22 PREDICATES      84 URIs      74 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0036024408020258 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 anzsrc-for:0307
4 schema:author Nb8dbe0fee65b4c41992c18b5eba856f9
5 schema:citation sg:pub.10.1007/bf02466395
6 schema:datePublished 2008-02
7 schema:datePublishedReg 2008-02-01
8 schema:description A model mixture of light hydrocarbons was used to study the separation capacity of monolithic capillary columns based on divinylbenzene with five different carrier gases, including helium, hydrogen, nitrogen, carbon dioxide, and nitrous oxide. The results were correlated with the previously obtained data on monolithic columns based on silica gel. It was shown that the influence of the nature of the carrier gas was weaker than for silica gel columns; the polymeric columns studied behaved similarly to hollow capillary columns with polymeric stationary phases and exhibited an efficiency gain of 20–30% along the series He < H2 < N2 ∼ N2O < CO2. Based on the minimum HETP (∼15 μm) obtained for the investigated monolithic columns under optimum conditions with N2O or CO2 as a carrier gas, the conclusion was drawn that the creation of divinylbenzene-based monolithic capillary columns with a high specific efficiency was possible.
9 schema:genre article
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf N2a5e550c834b415db6e42274616d6f82
13 N7eedb534845b444ca0fc7610bb14a7f1
14 sg:journal.1327871
15 schema:keywords CO2
16 H2
17 HETP
18 N2
19 N2O
20 adsorption chromatography
21 capacity
22 capillary column
23 carbon dioxide
24 carrier gas
25 carrier gases
26 chromatography
27 column
28 conclusion
29 conditions
30 creation
31 data
32 different carrier gases
33 dioxide
34 divinylbenzene
35 efficiency
36 efficiency gains
37 gain
38 gas
39 gas adsorption chromatography
40 gases
41 gel
42 gel column
43 helium
44 high specific efficiency
45 hydrocarbons
46 hydrogen
47 influence
48 light hydrocarbons
49 minimum HETP
50 mixture
51 model mixture
52 monolithic capillary columns
53 monolithic column
54 nature
55 nitrogen
56 nitrous oxide
57 optimum conditions
58 oxide
59 phase
60 polymeric column
61 polymeric stationary phase
62 properties
63 results
64 separating properties
65 separation capacity
66 series
67 silica gel
68 silica gel column
69 specific efficiency
70 stationary phase
71 schema:name The Influence of the Natures of the Carrier Gas and the Stationary Phase on the Separating Properties of Monolithic Capillary Columns in Gas Adsorption Chromatography
72 schema:pagination 276-281
73 schema:productId N3c188867ca054b218deef380e8e53519
74 N8f0f90368f9848cbbf8e1eecfc2ef555
75 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106770532
76 https://doi.org/10.1134/s0036024408020258
77 schema:sdDatePublished 2022-01-01T18:18
78 schema:sdLicense https://scigraph.springernature.com/explorer/license/
79 schema:sdPublisher N778f87ee10e349b8bc3a7a04c3e8c7ec
80 schema:url https://doi.org/10.1134/s0036024408020258
81 sgo:license sg:explorer/license/
82 sgo:sdDataset articles
83 rdf:type schema:ScholarlyArticle
84 N067f1d3f44864ba6919492c6bf8a60b9 schema:affiliation grid-institutes:grid.423490.8
85 schema:familyName Kurganov
86 schema:givenName A. A.
87 rdf:type schema:Person
88 N2a5e550c834b415db6e42274616d6f82 schema:volumeNumber 82
89 rdf:type schema:PublicationVolume
90 N2f0956461d7a4799924556e024342f92 rdf:first N067f1d3f44864ba6919492c6bf8a60b9
91 rdf:rest rdf:nil
92 N3c188867ca054b218deef380e8e53519 schema:name doi
93 schema:value 10.1134/s0036024408020258
94 rdf:type schema:PropertyValue
95 N4326dc37a48d44adbb7d4e59472e3ac6 rdf:first sg:person.01055573762.38
96 rdf:rest N48282f80b7ee4b66b3e8981730374528
97 N48282f80b7ee4b66b3e8981730374528 rdf:first sg:person.01123707162.15
98 rdf:rest N2f0956461d7a4799924556e024342f92
99 N778f87ee10e349b8bc3a7a04c3e8c7ec schema:name Springer Nature - SN SciGraph project
100 rdf:type schema:Organization
101 N7eedb534845b444ca0fc7610bb14a7f1 schema:issueNumber 2
102 rdf:type schema:PublicationIssue
103 N8f0f90368f9848cbbf8e1eecfc2ef555 schema:name dimensions_id
104 schema:value pub.1106770532
105 rdf:type schema:PropertyValue
106 Nb8dbe0fee65b4c41992c18b5eba856f9 rdf:first sg:person.014527423015.34
107 rdf:rest Nf378434d1f444deeb17c6d2687f28c66
108 Nf378434d1f444deeb17c6d2687f28c66 rdf:first sg:person.0761776377.67
109 rdf:rest N4326dc37a48d44adbb7d4e59472e3ac6
110 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
111 schema:name Chemical Sciences
112 rdf:type schema:DefinedTerm
113 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
114 schema:name Physical Chemistry (incl. Structural)
115 rdf:type schema:DefinedTerm
116 anzsrc-for:0307 schema:inDefinedTermSet anzsrc-for:
117 schema:name Theoretical and Computational Chemistry
118 rdf:type schema:DefinedTerm
119 sg:journal.1327871 schema:issn 0036-0244
120 0044-4537
121 schema:name Russian Journal of Physical Chemistry A
122 rdf:type schema:Periodical
123 sg:person.01055573762.38 schema:affiliation grid-institutes:grid.423490.8
124 schema:familyName Shiryaeva
125 schema:givenName V. E.
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01055573762.38
127 rdf:type schema:Person
128 sg:person.01123707162.15 schema:affiliation grid-institutes:grid.423490.8
129 schema:familyName Popova
130 schema:givenName T. P.
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01123707162.15
132 rdf:type schema:Person
133 sg:person.014527423015.34 schema:affiliation grid-institutes:grid.423490.8
134 schema:familyName Kozin
135 schema:givenName A. V.
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014527423015.34
137 rdf:type schema:Person
138 sg:person.0761776377.67 schema:affiliation grid-institutes:grid.423490.8
139 schema:familyName Korolev
140 schema:givenName A. A.
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761776377.67
142 rdf:type schema:Person
143 sg:pub.10.1007/bf02466395 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006331340
144 https://doi.org/10.1007/bf02466395
145 rdf:type schema:CreativeWork
146 grid-institutes:grid.423490.8 schema:alternateName Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii pr. 29, 117912, Moscow, Russia
147 schema:name Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii pr. 29, 117912, Moscow, Russia
148 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...