Loading capacities of monolithic capillary columns in gas chromatography View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2007-03

AUTHORS

A. A. Korolev, T. P. Popova, V. E. Shiryaeva, A. V. Kozin, A. A. Kurganov

ABSTRACT

The loading capacities of monolithic capillary columns based on silica gel and divinylbenzene are studied for two carrier gases, CO2 and N2. It is shown that the efficiency of the column is more sensitive to the overload of the column than the retention time of the sorbate is, especially for the CO2 carrier gas. It is established that the loading capacity of a monolithic column based on silica gel decreases significantly in going from N2 to CO2. For columns based on divinylbenzene, the loading capacity is found to be virtually the same for both carrier gases. For monolithic columns, the loading capacity per one meter of column length is found to be 10 and more times higher than that for a standard open capillary column. More... »

PAGES

469-474

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0036024407030314

DOI

http://dx.doi.org/10.1134/s0036024407030314

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1038588736


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0914", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Resources Engineering and Extractive Metallurgy", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii pr. 29, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Korolev", 
        "givenName": "A. A.", 
        "id": "sg:person.0761776377.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761776377.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii pr. 29, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Popova", 
        "givenName": "T. P.", 
        "id": "sg:person.01123707162.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01123707162.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii pr. 29, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shiryaeva", 
        "givenName": "V. E.", 
        "id": "sg:person.01055573762.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01055573762.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii pr. 29, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kozin", 
        "givenName": "A. V.", 
        "id": "sg:person.014527423015.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014527423015.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii pr. 29, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kurganov", 
        "givenName": "A. A.", 
        "id": "sg:person.01240135562.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01240135562.44"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0021-9673(97)00947-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001797470"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0009-2509(56)80003-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011696863"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0021-9673(94)80013-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013298327"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0021-9673(01)01471-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016337939"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/tf9555100034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021676490"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007-03", 
    "datePublishedReg": "2007-03-01", 
    "description": "The loading capacities of monolithic capillary columns based on silica gel and divinylbenzene are studied for two carrier gases, CO2 and N2. It is shown that the efficiency of the column is more sensitive to the overload of the column than the retention time of the sorbate is, especially for the CO2 carrier gas. It is established that the loading capacity of a monolithic column based on silica gel decreases significantly in going from N2 to CO2. For columns based on divinylbenzene, the loading capacity is found to be virtually the same for both carrier gases. For monolithic columns, the loading capacity per one meter of column length is found to be 10 and more times higher than that for a standard open capillary column.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s0036024407030314", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1327871", 
        "issn": [
          "0036-0244", 
          "0044-4537"
        ], 
        "name": "Russian Journal of Physical Chemistry A", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "81"
      }
    ], 
    "name": "Loading capacities of monolithic capillary columns in gas chromatography", 
    "pagination": "469-474", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b7d1e8831d4629310407f31f7867da0f9ead5ce83cf42ec0262d4f139b79b692"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0036024407030314"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1038588736"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0036024407030314", 
      "https://app.dimensions.ai/details/publication/pub.1038588736"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:08", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000506.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1134/S0036024407030314"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0036024407030314'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0036024407030314'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0036024407030314'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0036024407030314'


 

This table displays all metadata directly associated to this object as RDF triples.

104 TRIPLES      21 PREDICATES      32 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0036024407030314 schema:about anzsrc-for:09
2 anzsrc-for:0914
3 schema:author N086f9013fcc1483bb03cb48c29b1c88a
4 schema:citation https://doi.org/10.1016/0009-2509(56)80003-1
5 https://doi.org/10.1016/0021-9673(94)80013-8
6 https://doi.org/10.1016/s0021-9673(01)01471-6
7 https://doi.org/10.1016/s0021-9673(97)00947-3
8 https://doi.org/10.1039/tf9555100034
9 schema:datePublished 2007-03
10 schema:datePublishedReg 2007-03-01
11 schema:description The loading capacities of monolithic capillary columns based on silica gel and divinylbenzene are studied for two carrier gases, CO2 and N2. It is shown that the efficiency of the column is more sensitive to the overload of the column than the retention time of the sorbate is, especially for the CO2 carrier gas. It is established that the loading capacity of a monolithic column based on silica gel decreases significantly in going from N2 to CO2. For columns based on divinylbenzene, the loading capacity is found to be virtually the same for both carrier gases. For monolithic columns, the loading capacity per one meter of column length is found to be 10 and more times higher than that for a standard open capillary column.
12 schema:genre research_article
13 schema:inLanguage en
14 schema:isAccessibleForFree false
15 schema:isPartOf N23d68072ef0447009f5f9a8271501632
16 Nfc8a30fb032848dbb635901f21797a71
17 sg:journal.1327871
18 schema:name Loading capacities of monolithic capillary columns in gas chromatography
19 schema:pagination 469-474
20 schema:productId N3673ac1143734d80891926d6c629eea9
21 N6905daed3b524507bdff64bb798da269
22 Nb325bb09104240339f9227e6790ad5c1
23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038588736
24 https://doi.org/10.1134/s0036024407030314
25 schema:sdDatePublished 2019-04-10T14:08
26 schema:sdLicense https://scigraph.springernature.com/explorer/license/
27 schema:sdPublisher N47d1154c0d2c461c9c8bd03b02fba7f9
28 schema:url http://link.springer.com/10.1134/S0036024407030314
29 sgo:license sg:explorer/license/
30 sgo:sdDataset articles
31 rdf:type schema:ScholarlyArticle
32 N086f9013fcc1483bb03cb48c29b1c88a rdf:first sg:person.0761776377.67
33 rdf:rest N98c595826e2d4bb884d7518f3e57de49
34 N2204d399d3df4ba389f83d866b7adbe6 rdf:first sg:person.01240135562.44
35 rdf:rest rdf:nil
36 N23d68072ef0447009f5f9a8271501632 schema:issueNumber 3
37 rdf:type schema:PublicationIssue
38 N3562cb843abc4ccf9389605ac8a281d5 rdf:first sg:person.01055573762.38
39 rdf:rest Nc441f14e1a5a46949666ecb378a4d149
40 N3673ac1143734d80891926d6c629eea9 schema:name dimensions_id
41 schema:value pub.1038588736
42 rdf:type schema:PropertyValue
43 N47d1154c0d2c461c9c8bd03b02fba7f9 schema:name Springer Nature - SN SciGraph project
44 rdf:type schema:Organization
45 N6905daed3b524507bdff64bb798da269 schema:name readcube_id
46 schema:value b7d1e8831d4629310407f31f7867da0f9ead5ce83cf42ec0262d4f139b79b692
47 rdf:type schema:PropertyValue
48 N98c595826e2d4bb884d7518f3e57de49 rdf:first sg:person.01123707162.15
49 rdf:rest N3562cb843abc4ccf9389605ac8a281d5
50 Nb325bb09104240339f9227e6790ad5c1 schema:name doi
51 schema:value 10.1134/s0036024407030314
52 rdf:type schema:PropertyValue
53 Nc441f14e1a5a46949666ecb378a4d149 rdf:first sg:person.014527423015.34
54 rdf:rest N2204d399d3df4ba389f83d866b7adbe6
55 Nfc8a30fb032848dbb635901f21797a71 schema:volumeNumber 81
56 rdf:type schema:PublicationVolume
57 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
58 schema:name Engineering
59 rdf:type schema:DefinedTerm
60 anzsrc-for:0914 schema:inDefinedTermSet anzsrc-for:
61 schema:name Resources Engineering and Extractive Metallurgy
62 rdf:type schema:DefinedTerm
63 sg:journal.1327871 schema:issn 0036-0244
64 0044-4537
65 schema:name Russian Journal of Physical Chemistry A
66 rdf:type schema:Periodical
67 sg:person.01055573762.38 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
68 schema:familyName Shiryaeva
69 schema:givenName V. E.
70 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01055573762.38
71 rdf:type schema:Person
72 sg:person.01123707162.15 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
73 schema:familyName Popova
74 schema:givenName T. P.
75 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01123707162.15
76 rdf:type schema:Person
77 sg:person.01240135562.44 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
78 schema:familyName Kurganov
79 schema:givenName A. A.
80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01240135562.44
81 rdf:type schema:Person
82 sg:person.014527423015.34 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
83 schema:familyName Kozin
84 schema:givenName A. V.
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014527423015.34
86 rdf:type schema:Person
87 sg:person.0761776377.67 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
88 schema:familyName Korolev
89 schema:givenName A. A.
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761776377.67
91 rdf:type schema:Person
92 https://doi.org/10.1016/0009-2509(56)80003-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011696863
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1016/0021-9673(94)80013-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013298327
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1016/s0021-9673(01)01471-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016337939
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1016/s0021-9673(97)00947-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001797470
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1039/tf9555100034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021676490
101 rdf:type schema:CreativeWork
102 https://www.grid.ac/institutes/grid.4886.2 schema:alternateName Russian Academy of Sciences
103 schema:name Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii pr. 29, 119991, Moscow, Russia
104 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...