Effect of the nature of the carrier gas on the chromatographic characteristics of monolithic silica capillary columns View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2006-07

AUTHORS

A. A. Korolev, V. E. Shiryaeva, T. P. Popova, A. A. Kurganov

ABSTRACT

Chromatographing a model mixture of hydrocarbons with various carrier gases (helium, hydrogen, nitrogen, carbon dioxide, and nitrous oxide) was used to study the separation ability of monolithic silica capillary columns. It was revealed that the nature of the carrier gas strongly affects the retention time of the sorbates and the height equivalent to a theoretical plate (HETP) of the column, with the values of both these parameters decreasing in the series He > H2 > N2 > CO2 ∼ N2O. This effect was found to be more pronounced for normal hydrocarbons than for their isomers. For chromatographing with CO2 or N2O under optimum conditions, the HETP was 25–30 μm, a value indicative of a higher specific efficiency of monolithic capillary columns. Theoretical correlations between the HETP and the properties of the mobile phase were considered. As a result, it was concluded that elevated pressures of the carrier gas, which are required to ensure the optimum operation of monolithic capillary columns, may affect the properties of the chromatographic system. More... »

PAGES

1135-1140

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0036024406070235

DOI

http://dx.doi.org/10.1134/s0036024406070235

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1010249195


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0904", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii pr. 29, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Korolev", 
        "givenName": "A. A.", 
        "id": "sg:person.0761776377.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761776377.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii pr. 29, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shiryaeva", 
        "givenName": "V. E.", 
        "id": "sg:person.016163553457.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016163553457.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii pr. 29, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Popova", 
        "givenName": "T. P.", 
        "id": "sg:person.01123707162.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01123707162.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii pr. 29, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kurganov", 
        "givenName": "A. A.", 
        "id": "sg:person.01240135562.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01240135562.44"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/aic.690010222", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030234874"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0021-9673(00)00152-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041695886"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0021-9673(97)00377-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051537768"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ie50677a007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055641302"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2006-07", 
    "datePublishedReg": "2006-07-01", 
    "description": "Chromatographing a model mixture of hydrocarbons with various carrier gases (helium, hydrogen, nitrogen, carbon dioxide, and nitrous oxide) was used to study the separation ability of monolithic silica capillary columns. It was revealed that the nature of the carrier gas strongly affects the retention time of the sorbates and the height equivalent to a theoretical plate (HETP) of the column, with the values of both these parameters decreasing in the series He > H2 > N2 > CO2 \u223c N2O. This effect was found to be more pronounced for normal hydrocarbons than for their isomers. For chromatographing with CO2 or N2O under optimum conditions, the HETP was 25\u201330 \u03bcm, a value indicative of a higher specific efficiency of monolithic capillary columns. Theoretical correlations between the HETP and the properties of the mobile phase were considered. As a result, it was concluded that elevated pressures of the carrier gas, which are required to ensure the optimum operation of monolithic capillary columns, may affect the properties of the chromatographic system.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s0036024406070235", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1327871", 
        "issn": [
          "0036-0244", 
          "0044-4537"
        ], 
        "name": "Russian Journal of Physical Chemistry A", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "80"
      }
    ], 
    "name": "Effect of the nature of the carrier gas on the chromatographic characteristics of monolithic silica capillary columns", 
    "pagination": "1135-1140", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "30d423e98cd9d8c4db89df406412102a1f288eec494ace72c394c10001cff669"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0036024406070235"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1010249195"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0036024406070235", 
      "https://app.dimensions.ai/details/publication/pub.1010249195"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T13:13", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000503.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1134/S0036024406070235"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0036024406070235'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0036024406070235'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0036024406070235'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0036024406070235'


 

This table displays all metadata directly associated to this object as RDF triples.

94 TRIPLES      21 PREDICATES      31 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0036024406070235 schema:about anzsrc-for:09
2 anzsrc-for:0904
3 schema:author Ne2c154132d29422c9ca1cb909f73f6ef
4 schema:citation https://doi.org/10.1002/aic.690010222
5 https://doi.org/10.1016/s0021-9673(00)00152-7
6 https://doi.org/10.1016/s0021-9673(97)00377-4
7 https://doi.org/10.1021/ie50677a007
8 schema:datePublished 2006-07
9 schema:datePublishedReg 2006-07-01
10 schema:description Chromatographing a model mixture of hydrocarbons with various carrier gases (helium, hydrogen, nitrogen, carbon dioxide, and nitrous oxide) was used to study the separation ability of monolithic silica capillary columns. It was revealed that the nature of the carrier gas strongly affects the retention time of the sorbates and the height equivalent to a theoretical plate (HETP) of the column, with the values of both these parameters decreasing in the series He > H2 > N2 > CO2 ∼ N2O. This effect was found to be more pronounced for normal hydrocarbons than for their isomers. For chromatographing with CO2 or N2O under optimum conditions, the HETP was 25–30 μm, a value indicative of a higher specific efficiency of monolithic capillary columns. Theoretical correlations between the HETP and the properties of the mobile phase were considered. As a result, it was concluded that elevated pressures of the carrier gas, which are required to ensure the optimum operation of monolithic capillary columns, may affect the properties of the chromatographic system.
11 schema:genre research_article
12 schema:inLanguage en
13 schema:isAccessibleForFree false
14 schema:isPartOf N176b8c1ae8c2411b998b9113edb9e5cc
15 N1f06596854134f5aafede3fee69fcfa7
16 sg:journal.1327871
17 schema:name Effect of the nature of the carrier gas on the chromatographic characteristics of monolithic silica capillary columns
18 schema:pagination 1135-1140
19 schema:productId N27ac5c440f534c6fad8f00f939db4217
20 Nb9845ceca625446bb2637a95022cb655
21 Nd2f5f36845634a86921d4b4a278688e1
22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010249195
23 https://doi.org/10.1134/s0036024406070235
24 schema:sdDatePublished 2019-04-10T13:13
25 schema:sdLicense https://scigraph.springernature.com/explorer/license/
26 schema:sdPublisher N6325870f8a78438ab2dca0a54facb0cf
27 schema:url http://link.springer.com/10.1134/S0036024406070235
28 sgo:license sg:explorer/license/
29 sgo:sdDataset articles
30 rdf:type schema:ScholarlyArticle
31 N176b8c1ae8c2411b998b9113edb9e5cc schema:issueNumber 7
32 rdf:type schema:PublicationIssue
33 N1f06596854134f5aafede3fee69fcfa7 schema:volumeNumber 80
34 rdf:type schema:PublicationVolume
35 N27ac5c440f534c6fad8f00f939db4217 schema:name readcube_id
36 schema:value 30d423e98cd9d8c4db89df406412102a1f288eec494ace72c394c10001cff669
37 rdf:type schema:PropertyValue
38 N56baeed6aa954442a82a348d737b1db0 rdf:first sg:person.01123707162.15
39 rdf:rest N75e76e80589741c593d62a2bd56f41e4
40 N6325870f8a78438ab2dca0a54facb0cf schema:name Springer Nature - SN SciGraph project
41 rdf:type schema:Organization
42 N75e76e80589741c593d62a2bd56f41e4 rdf:first sg:person.01240135562.44
43 rdf:rest rdf:nil
44 Nb7d450dfb7444517902251d56370d2a2 rdf:first sg:person.016163553457.07
45 rdf:rest N56baeed6aa954442a82a348d737b1db0
46 Nb9845ceca625446bb2637a95022cb655 schema:name dimensions_id
47 schema:value pub.1010249195
48 rdf:type schema:PropertyValue
49 Nd2f5f36845634a86921d4b4a278688e1 schema:name doi
50 schema:value 10.1134/s0036024406070235
51 rdf:type schema:PropertyValue
52 Ne2c154132d29422c9ca1cb909f73f6ef rdf:first sg:person.0761776377.67
53 rdf:rest Nb7d450dfb7444517902251d56370d2a2
54 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
55 schema:name Engineering
56 rdf:type schema:DefinedTerm
57 anzsrc-for:0904 schema:inDefinedTermSet anzsrc-for:
58 schema:name Chemical Engineering
59 rdf:type schema:DefinedTerm
60 sg:journal.1327871 schema:issn 0036-0244
61 0044-4537
62 schema:name Russian Journal of Physical Chemistry A
63 rdf:type schema:Periodical
64 sg:person.01123707162.15 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
65 schema:familyName Popova
66 schema:givenName T. P.
67 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01123707162.15
68 rdf:type schema:Person
69 sg:person.01240135562.44 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
70 schema:familyName Kurganov
71 schema:givenName A. A.
72 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01240135562.44
73 rdf:type schema:Person
74 sg:person.016163553457.07 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
75 schema:familyName Shiryaeva
76 schema:givenName V. E.
77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016163553457.07
78 rdf:type schema:Person
79 sg:person.0761776377.67 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
80 schema:familyName Korolev
81 schema:givenName A. A.
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761776377.67
83 rdf:type schema:Person
84 https://doi.org/10.1002/aic.690010222 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030234874
85 rdf:type schema:CreativeWork
86 https://doi.org/10.1016/s0021-9673(00)00152-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041695886
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1016/s0021-9673(97)00377-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051537768
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1021/ie50677a007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055641302
91 rdf:type schema:CreativeWork
92 https://www.grid.ac/institutes/grid.4886.2 schema:alternateName Russian Academy of Sciences
93 schema:name Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii pr. 29, 119991, Moscow, Russia
94 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...