Effect of the pressure of the carrier gas on the parameters of the Van Deemter equation for monolithic silica gel ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2006-05

AUTHORS

A. A. Korolev, V. E. Shiryaeva, T. P. Popova, A. A. Kurganov

ABSTRACT

The chromatographic properties of monolithic capillary silica gel columns for gas chromatography were examined with the use of four different variants of the Van Deemter model. The corresponding experimental curves were measured for the elution of light hydrocarbons with the helium carrier gas in the isothermal mode at 60°C. Despite the models tested are based on different mechanisms of the smearing of chromatographic peaks, the values of the Van Deemter equation parameters proved to be very close to each other for three of the four models. All models yielded negative values of the parameter A. Physically reasonable values of the parameters of the Van Deemter equation were obtained only for the Giddings model, which takes into account the pressure drop across the column. At the same time, this model overestimated the contribution from diffusional smearing (parameter B). It was concluded that none of the models tested adequately described the chromatographic properties of monolithic capillary columns for gas chromatography. More... »

PAGES

781-785

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0036024406050190

DOI

http://dx.doi.org/10.1134/s0036024406050190

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1031198595


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0301", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Analytical Chemistry", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii pr. 29, 119991, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423490.8", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii pr. 29, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Korolev", 
        "givenName": "A. A.", 
        "id": "sg:person.0761776377.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761776377.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii pr. 29, 119991, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423490.8", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii pr. 29, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shiryaeva", 
        "givenName": "V. E.", 
        "id": "sg:person.016163553457.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016163553457.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii pr. 29, 119991, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423490.8", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii pr. 29, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Popova", 
        "givenName": "T. P.", 
        "id": "sg:person.01123707162.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01123707162.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii pr. 29, 119991, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423490.8", 
          "name": [
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii pr. 29, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kurganov", 
        "givenName": "A. A.", 
        "id": "sg:person.01240135562.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01240135562.44"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2006-05", 
    "datePublishedReg": "2006-05-01", 
    "description": "The chromatographic properties of monolithic capillary silica gel columns for gas chromatography were examined with the use of four different variants of the Van Deemter model. The corresponding experimental curves were measured for the elution of light hydrocarbons with the helium carrier gas in the isothermal mode at 60\u00b0C. Despite the models tested are based on different mechanisms of the smearing of chromatographic peaks, the values of the Van Deemter equation parameters proved to be very close to each other for three of the four models. All models yielded negative values of the parameter A. Physically reasonable values of the parameters of the Van Deemter equation were obtained only for the Giddings model, which takes into account the pressure drop across the column. At the same time, this model overestimated the contribution from diffusional smearing (parameter B). It was concluded that none of the models tested adequately described the chromatographic properties of monolithic capillary columns for gas chromatography.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s0036024406050190", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1327871", 
        "issn": [
          "0036-0244", 
          "0044-4537"
        ], 
        "name": "Russian Journal of Physical Chemistry A", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "80"
      }
    ], 
    "keywords": [
      "van Deemter equation", 
      "chromatographic properties", 
      "gas chromatography", 
      "monolithic capillary columns", 
      "carrier gas", 
      "silica gel column", 
      "gas chromatography column", 
      "Van Deemter model", 
      "helium carrier gas", 
      "gel column", 
      "capillary column", 
      "light hydrocarbons", 
      "chromatography column", 
      "chromatographic peaks", 
      "isothermal mode", 
      "chromatography", 
      "column", 
      "negative values", 
      "properties", 
      "elution", 
      "gas", 
      "hydrocarbons", 
      "Giddings model", 
      "corresponding experimental curves", 
      "experimental curves", 
      "equation parameters", 
      "different mechanisms", 
      "peak", 
      "parameters", 
      "reasonable values", 
      "values", 
      "mode", 
      "mechanism", 
      "curves", 
      "A.", 
      "drop", 
      "pressure", 
      "smearing", 
      "effect", 
      "same time", 
      "contribution", 
      "time", 
      "use", 
      "equations", 
      "pressure drop", 
      "model", 
      "parameter a.", 
      "different variants", 
      "account", 
      "variants", 
      "monolithic capillary silica gel columns", 
      "capillary silica gel columns", 
      "Deemter model", 
      "Van Deemter equation parameters", 
      "Deemter equation parameters", 
      "Deemter equation", 
      "diffusional smearing", 
      "monolithic silica gel gas chromatography columns", 
      "silica gel gas chromatography columns", 
      "gel gas chromatography columns"
    ], 
    "name": "Effect of the pressure of the carrier gas on the parameters of the Van Deemter equation for monolithic silica gel gas chromatography columns", 
    "pagination": "781-785", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1031198595"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0036024406050190"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0036024406050190", 
      "https://app.dimensions.ai/details/publication/pub.1031198595"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:18", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_419.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s0036024406050190"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0036024406050190'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0036024406050190'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0036024406050190'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0036024406050190'


 

This table displays all metadata directly associated to this object as RDF triples.

139 TRIPLES      21 PREDICATES      86 URIs      78 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0036024406050190 schema:about anzsrc-for:03
2 anzsrc-for:0301
3 schema:author Nd78baf0030eb458ebedfd6da6409d4a0
4 schema:datePublished 2006-05
5 schema:datePublishedReg 2006-05-01
6 schema:description The chromatographic properties of monolithic capillary silica gel columns for gas chromatography were examined with the use of four different variants of the Van Deemter model. The corresponding experimental curves were measured for the elution of light hydrocarbons with the helium carrier gas in the isothermal mode at 60°C. Despite the models tested are based on different mechanisms of the smearing of chromatographic peaks, the values of the Van Deemter equation parameters proved to be very close to each other for three of the four models. All models yielded negative values of the parameter A. Physically reasonable values of the parameters of the Van Deemter equation were obtained only for the Giddings model, which takes into account the pressure drop across the column. At the same time, this model overestimated the contribution from diffusional smearing (parameter B). It was concluded that none of the models tested adequately described the chromatographic properties of monolithic capillary columns for gas chromatography.
7 schema:genre article
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf N466365a268fc44a48e6192ae4277ccae
11 Nb2a4ce4e19ba4b588a587bf278b1601a
12 sg:journal.1327871
13 schema:keywords A.
14 Deemter equation
15 Deemter equation parameters
16 Deemter model
17 Giddings model
18 Van Deemter equation parameters
19 Van Deemter model
20 account
21 capillary column
22 capillary silica gel columns
23 carrier gas
24 chromatographic peaks
25 chromatographic properties
26 chromatography
27 chromatography column
28 column
29 contribution
30 corresponding experimental curves
31 curves
32 different mechanisms
33 different variants
34 diffusional smearing
35 drop
36 effect
37 elution
38 equation parameters
39 equations
40 experimental curves
41 gas
42 gas chromatography
43 gas chromatography column
44 gel column
45 gel gas chromatography columns
46 helium carrier gas
47 hydrocarbons
48 isothermal mode
49 light hydrocarbons
50 mechanism
51 mode
52 model
53 monolithic capillary columns
54 monolithic capillary silica gel columns
55 monolithic silica gel gas chromatography columns
56 negative values
57 parameter a.
58 parameters
59 peak
60 pressure
61 pressure drop
62 properties
63 reasonable values
64 same time
65 silica gel column
66 silica gel gas chromatography columns
67 smearing
68 time
69 use
70 values
71 van Deemter equation
72 variants
73 schema:name Effect of the pressure of the carrier gas on the parameters of the Van Deemter equation for monolithic silica gel gas chromatography columns
74 schema:pagination 781-785
75 schema:productId N110075fad64641319caea69b26203081
76 Nc55014a4232f41a285331b44d21bf62f
77 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031198595
78 https://doi.org/10.1134/s0036024406050190
79 schema:sdDatePublished 2021-12-01T19:18
80 schema:sdLicense https://scigraph.springernature.com/explorer/license/
81 schema:sdPublisher Nfc2a4176fa05424cb6d288a0dc923640
82 schema:url https://doi.org/10.1134/s0036024406050190
83 sgo:license sg:explorer/license/
84 sgo:sdDataset articles
85 rdf:type schema:ScholarlyArticle
86 N110075fad64641319caea69b26203081 schema:name dimensions_id
87 schema:value pub.1031198595
88 rdf:type schema:PropertyValue
89 N273a34dca01f4f2496fee522b9b062eb rdf:first sg:person.01240135562.44
90 rdf:rest rdf:nil
91 N466365a268fc44a48e6192ae4277ccae schema:issueNumber 5
92 rdf:type schema:PublicationIssue
93 N4d1c27a3400643639d20c595535ff36c rdf:first sg:person.016163553457.07
94 rdf:rest Nf11e9f0551cc4dfeb0c2bccf83dba6c8
95 Nb2a4ce4e19ba4b588a587bf278b1601a schema:volumeNumber 80
96 rdf:type schema:PublicationVolume
97 Nc55014a4232f41a285331b44d21bf62f schema:name doi
98 schema:value 10.1134/s0036024406050190
99 rdf:type schema:PropertyValue
100 Nd78baf0030eb458ebedfd6da6409d4a0 rdf:first sg:person.0761776377.67
101 rdf:rest N4d1c27a3400643639d20c595535ff36c
102 Nf11e9f0551cc4dfeb0c2bccf83dba6c8 rdf:first sg:person.01123707162.15
103 rdf:rest N273a34dca01f4f2496fee522b9b062eb
104 Nfc2a4176fa05424cb6d288a0dc923640 schema:name Springer Nature - SN SciGraph project
105 rdf:type schema:Organization
106 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
107 schema:name Chemical Sciences
108 rdf:type schema:DefinedTerm
109 anzsrc-for:0301 schema:inDefinedTermSet anzsrc-for:
110 schema:name Analytical Chemistry
111 rdf:type schema:DefinedTerm
112 sg:journal.1327871 schema:issn 0036-0244
113 0044-4537
114 schema:name Russian Journal of Physical Chemistry A
115 schema:publisher Pleiades Publishing
116 rdf:type schema:Periodical
117 sg:person.01123707162.15 schema:affiliation grid-institutes:grid.423490.8
118 schema:familyName Popova
119 schema:givenName T. P.
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01123707162.15
121 rdf:type schema:Person
122 sg:person.01240135562.44 schema:affiliation grid-institutes:grid.423490.8
123 schema:familyName Kurganov
124 schema:givenName A. A.
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01240135562.44
126 rdf:type schema:Person
127 sg:person.016163553457.07 schema:affiliation grid-institutes:grid.423490.8
128 schema:familyName Shiryaeva
129 schema:givenName V. E.
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016163553457.07
131 rdf:type schema:Person
132 sg:person.0761776377.67 schema:affiliation grid-institutes:grid.423490.8
133 schema:familyName Korolev
134 schema:givenName A. A.
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761776377.67
136 rdf:type schema:Person
137 grid-institutes:grid.423490.8 schema:alternateName Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii pr. 29, 119991, Moscow, Russia
138 schema:name Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskii pr. 29, 119991, Moscow, Russia
139 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...