Gaussian classical-quantum channels: Gain from entanglement-assistance View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-01

AUTHORS

A. S. Holevo

ABSTRACT

In the present paper we introduce and study Bosonic Gaussian classical-quantum (c-q) channels; embedding of the classical input in quantum input is always possible, and therefore the classical entanglement-assisted capacity Cea under an appropriate input constraint is well defined. We prove the general property of entropy increase for a weak complementary channel, which implies the equality C = Cea (where C is the unassisted capacity) for a certain class of c-q Gaussian channels under an appropriate energy-type constraint. On the other hand, we show by an explicit example that the inequality C < Cea is not unusual for constrained c-q Gaussian channel. More... »

PAGES

1-14

References to SciGraph publications

  • 2012-04. Conditions for coincidence of the classical capacity and entanglement-assisted capacity of a quantum channel in PROBLEMS OF INFORMATION TRANSMISSION
  • 2011-01. Entropy gain and the Choi-Jamiolkowski correspondence for infinite-dimensional quantum evolutions in THEORETICAL AND MATHEMATICAL PHYSICS
  • 2012-03. Information capacity of a quantum observable in PROBLEMS OF INFORMATION TRANSMISSION
  • 2013-01. On classical capacities of infinite-dimensional quantum channels in PROBLEMS OF INFORMATION TRANSMISSION
  • 2013-02. Extreme bosonic linear channels in THEORETICAL AND MATHEMATICAL PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1134/s0032946014010013

    DOI

    http://dx.doi.org/10.1134/s0032946014010013

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1038771079


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Quantum Physics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Steklov Mathematical Institute", 
              "id": "https://www.grid.ac/institutes/grid.426543.2", 
              "name": [
                "Steklov Mathematical Institute, Russian Academy of Sciences, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Holevo", 
            "givenName": "A. S.", 
            "id": "sg:person.012742037634.56", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012742037634.56"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1134/s0032946012010012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001903196", 
              "https://doi.org/10.1134/s0032946012010012"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11232-011-0010-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012435993", 
              "https://doi.org/10.1007/s11232-011-0010-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.83.3081", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015408623"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.83.3081", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015408623"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11232-013-0026-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036111953", 
              "https://doi.org/10.1007/s11232-013-0026-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s003294601301002x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039956480", 
              "https://doi.org/10.1134/s003294601301002x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.84.022306", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042655990"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.84.022306", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042655990"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s0032946012020019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048891999", 
              "https://doi.org/10.1134/s0032946012020019"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tit.2002.802612", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061649633"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2014-01", 
        "datePublishedReg": "2014-01-01", 
        "description": "In the present paper we introduce and study Bosonic Gaussian classical-quantum (c-q) channels; embedding of the classical input in quantum input is always possible, and therefore the classical entanglement-assisted capacity Cea under an appropriate input constraint is well defined. We prove the general property of entropy increase for a weak complementary channel, which implies the equality C = Cea (where C is the unassisted capacity) for a certain class of c-q Gaussian channels under an appropriate energy-type constraint. On the other hand, we show by an explicit example that the inequality C < Cea is not unusual for constrained c-q Gaussian channel.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1134/s0032946014010013", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1136386", 
            "issn": [
              "0032-9460", 
              "1608-3253"
            ], 
            "name": "Problems of Information Transmission", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "50"
          }
        ], 
        "name": "Gaussian classical-quantum channels: Gain from entanglement-assistance", 
        "pagination": "1-14", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "b8b045f20eae67a72dfe43256ff98b488ae4acb28eac0c798e0d4ace5b49520f"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1134/s0032946014010013"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1038771079"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1134/s0032946014010013", 
          "https://app.dimensions.ai/details/publication/pub.1038771079"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T00:14", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000507.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1134/S0032946014010013"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0032946014010013'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0032946014010013'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0032946014010013'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0032946014010013'


     

    This table displays all metadata directly associated to this object as RDF triples.

    90 TRIPLES      21 PREDICATES      35 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1134/s0032946014010013 schema:about anzsrc-for:02
    2 anzsrc-for:0206
    3 schema:author Nd58cc67899984a1b8759ff60d9a044c8
    4 schema:citation sg:pub.10.1007/s11232-011-0010-5
    5 sg:pub.10.1007/s11232-013-0026-0
    6 sg:pub.10.1134/s0032946012010012
    7 sg:pub.10.1134/s0032946012020019
    8 sg:pub.10.1134/s003294601301002x
    9 https://doi.org/10.1103/physreva.84.022306
    10 https://doi.org/10.1103/physrevlett.83.3081
    11 https://doi.org/10.1109/tit.2002.802612
    12 schema:datePublished 2014-01
    13 schema:datePublishedReg 2014-01-01
    14 schema:description In the present paper we introduce and study Bosonic Gaussian classical-quantum (c-q) channels; embedding of the classical input in quantum input is always possible, and therefore the classical entanglement-assisted capacity Cea under an appropriate input constraint is well defined. We prove the general property of entropy increase for a weak complementary channel, which implies the equality C = Cea (where C is the unassisted capacity) for a certain class of c-q Gaussian channels under an appropriate energy-type constraint. On the other hand, we show by an explicit example that the inequality C < Cea is not unusual for constrained c-q Gaussian channel.
    15 schema:genre research_article
    16 schema:inLanguage en
    17 schema:isAccessibleForFree true
    18 schema:isPartOf N1ff1680c07c343d7a3ef3e9bbcada553
    19 N7f262a1c508b471797575220c24894c3
    20 sg:journal.1136386
    21 schema:name Gaussian classical-quantum channels: Gain from entanglement-assistance
    22 schema:pagination 1-14
    23 schema:productId N1aa48fcc7032406b8ed6d7cbe260d2b2
    24 N513c8a936bdd41aea586fa08e98d3560
    25 N73c6253394ed4777aa6a8bd8450e7da1
    26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038771079
    27 https://doi.org/10.1134/s0032946014010013
    28 schema:sdDatePublished 2019-04-11T00:14
    29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    30 schema:sdPublisher Nb1db7ac5d0bd40f3abb46b484b8df315
    31 schema:url http://link.springer.com/10.1134/S0032946014010013
    32 sgo:license sg:explorer/license/
    33 sgo:sdDataset articles
    34 rdf:type schema:ScholarlyArticle
    35 N1aa48fcc7032406b8ed6d7cbe260d2b2 schema:name readcube_id
    36 schema:value b8b045f20eae67a72dfe43256ff98b488ae4acb28eac0c798e0d4ace5b49520f
    37 rdf:type schema:PropertyValue
    38 N1ff1680c07c343d7a3ef3e9bbcada553 schema:issueNumber 1
    39 rdf:type schema:PublicationIssue
    40 N513c8a936bdd41aea586fa08e98d3560 schema:name doi
    41 schema:value 10.1134/s0032946014010013
    42 rdf:type schema:PropertyValue
    43 N73c6253394ed4777aa6a8bd8450e7da1 schema:name dimensions_id
    44 schema:value pub.1038771079
    45 rdf:type schema:PropertyValue
    46 N7f262a1c508b471797575220c24894c3 schema:volumeNumber 50
    47 rdf:type schema:PublicationVolume
    48 Nb1db7ac5d0bd40f3abb46b484b8df315 schema:name Springer Nature - SN SciGraph project
    49 rdf:type schema:Organization
    50 Nd58cc67899984a1b8759ff60d9a044c8 rdf:first sg:person.012742037634.56
    51 rdf:rest rdf:nil
    52 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    53 schema:name Physical Sciences
    54 rdf:type schema:DefinedTerm
    55 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
    56 schema:name Quantum Physics
    57 rdf:type schema:DefinedTerm
    58 sg:journal.1136386 schema:issn 0032-9460
    59 1608-3253
    60 schema:name Problems of Information Transmission
    61 rdf:type schema:Periodical
    62 sg:person.012742037634.56 schema:affiliation https://www.grid.ac/institutes/grid.426543.2
    63 schema:familyName Holevo
    64 schema:givenName A. S.
    65 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012742037634.56
    66 rdf:type schema:Person
    67 sg:pub.10.1007/s11232-011-0010-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012435993
    68 https://doi.org/10.1007/s11232-011-0010-5
    69 rdf:type schema:CreativeWork
    70 sg:pub.10.1007/s11232-013-0026-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036111953
    71 https://doi.org/10.1007/s11232-013-0026-0
    72 rdf:type schema:CreativeWork
    73 sg:pub.10.1134/s0032946012010012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001903196
    74 https://doi.org/10.1134/s0032946012010012
    75 rdf:type schema:CreativeWork
    76 sg:pub.10.1134/s0032946012020019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048891999
    77 https://doi.org/10.1134/s0032946012020019
    78 rdf:type schema:CreativeWork
    79 sg:pub.10.1134/s003294601301002x schema:sameAs https://app.dimensions.ai/details/publication/pub.1039956480
    80 https://doi.org/10.1134/s003294601301002x
    81 rdf:type schema:CreativeWork
    82 https://doi.org/10.1103/physreva.84.022306 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042655990
    83 rdf:type schema:CreativeWork
    84 https://doi.org/10.1103/physrevlett.83.3081 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015408623
    85 rdf:type schema:CreativeWork
    86 https://doi.org/10.1109/tit.2002.802612 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061649633
    87 rdf:type schema:CreativeWork
    88 https://www.grid.ac/institutes/grid.426543.2 schema:alternateName Steklov Mathematical Institute
    89 schema:name Steklov Mathematical Institute, Russian Academy of Sciences, Moscow, Russia
    90 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...