On classical capacities of infinite-dimensional quantum channels View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2013-01

AUTHORS

A. S. Holevo, M. E. Shirokov

ABSTRACT

A coding theorem for entanglement-assisted communication via an infinite-dimensional quantum channel with linear constraints is extended to a natural degree of generality. Relations between the entanglement-assisted classical capacity and χ-capacity of constrained channels are obtained, and conditions for their coincidence are given. Sufficient conditions for continuity of the entanglement-assisted classical capacity as a function of a channel are obtained. Some applications of the obtained results to analysis of Gaussian channels are considered. A general (continuous) version of the fundamental relation between coherent information and the measure of privacy of classical information transmission via an infinite-dimensional quantum channel is proved. More... »

PAGES

15-31

References to SciGraph publications

  • 2008-06. On approximation of infinite-dimensional quantum channels in PROBLEMS OF INFORMATION TRANSMISSION
  • 2010-09. Mutual and coherent information for infinite-dimensional quantum channels in PROBLEMS OF INFORMATION TRANSMISSION
  • 2009-11. Continuity of Quantum Channel Capacities in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2012-04. Conditions for coincidence of the classical capacity and entanglement-assisted capacity of a quantum channel in PROBLEMS OF INFORMATION TRANSMISSION
  • 1974-06. Expectations and entropy inequalities for finite quantum systems in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1134/s003294601301002x

    DOI

    http://dx.doi.org/10.1134/s003294601301002x

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1039956480


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Quantum Physics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Steklov Mathematical Institute", 
              "id": "https://www.grid.ac/institutes/grid.426543.2", 
              "name": [
                "Steklov Mathematical Institute, Russian Academy of Sciences, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Holevo", 
            "givenName": "A. S.", 
            "id": "sg:person.012742037634.56", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012742037634.56"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Steklov Mathematical Institute", 
              "id": "https://www.grid.ac/institutes/grid.426543.2", 
              "name": [
                "Steklov Mathematical Institute, Russian Academy of Sciences, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Shirokov", 
            "givenName": "M. E.", 
            "id": "sg:person.014741114345.19", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014741114345.19"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1103/physreva.56.3470", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004368835"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.56.3470", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004368835"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01608390", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005287470", 
              "https://doi.org/10.1007/bf01608390"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s0032946010030014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009193776", 
              "https://doi.org/10.1134/s0032946010030014"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s0032946010030014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009193776", 
              "https://doi.org/10.1134/s0032946010030014"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.83.3081", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015408623"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.83.3081", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015408623"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s0032946008020014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031865090", 
              "https://doi.org/10.1134/s0032946008020014"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-009-0833-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032185904", 
              "https://doi.org/10.1007/s00220-009-0833-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-009-0833-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032185904", 
              "https://doi.org/10.1007/s00220-009-0833-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-009-0833-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032185904", 
              "https://doi.org/10.1007/s00220-009-0833-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.80.5695", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035334495"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.80.5695", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035334495"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s0032946012020019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048891999", 
              "https://doi.org/10.1134/s0032946012020019"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.63.022308", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060496888"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.63.022308", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060496888"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tit.2002.802612", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061649633"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4213/tvp151", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072376178"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4213/tvp160", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072376209"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4213/tvp289", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072376571"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4213/tvp4282", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072376951"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2013-01", 
        "datePublishedReg": "2013-01-01", 
        "description": "A coding theorem for entanglement-assisted communication via an infinite-dimensional quantum channel with linear constraints is extended to a natural degree of generality. Relations between the entanglement-assisted classical capacity and \u03c7-capacity of constrained channels are obtained, and conditions for their coincidence are given. Sufficient conditions for continuity of the entanglement-assisted classical capacity as a function of a channel are obtained. Some applications of the obtained results to analysis of Gaussian channels are considered. A general (continuous) version of the fundamental relation between coherent information and the measure of privacy of classical information transmission via an infinite-dimensional quantum channel is proved.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1134/s003294601301002x", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136386", 
            "issn": [
              "0032-9460", 
              "1608-3253"
            ], 
            "name": "Problems of Information Transmission", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "49"
          }
        ], 
        "name": "On classical capacities of infinite-dimensional quantum channels", 
        "pagination": "15-31", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "be561b7478d9f5f155f377abf3f3c5358952b36b2209350ddc666b3a19aef74a"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1134/s003294601301002x"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1039956480"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1134/s003294601301002x", 
          "https://app.dimensions.ai/details/publication/pub.1039956480"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T20:45", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000507.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1134/S003294601301002X"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s003294601301002x'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s003294601301002x'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s003294601301002x'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s003294601301002x'


     

    This table displays all metadata directly associated to this object as RDF triples.

    115 TRIPLES      21 PREDICATES      41 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1134/s003294601301002x schema:about anzsrc-for:02
    2 anzsrc-for:0206
    3 schema:author N4a6b13b2424f44bebe5c2255a6f8760d
    4 schema:citation sg:pub.10.1007/bf01608390
    5 sg:pub.10.1007/s00220-009-0833-1
    6 sg:pub.10.1134/s0032946008020014
    7 sg:pub.10.1134/s0032946010030014
    8 sg:pub.10.1134/s0032946012020019
    9 https://doi.org/10.1103/physreva.56.3470
    10 https://doi.org/10.1103/physreva.63.022308
    11 https://doi.org/10.1103/physrevlett.80.5695
    12 https://doi.org/10.1103/physrevlett.83.3081
    13 https://doi.org/10.1109/tit.2002.802612
    14 https://doi.org/10.4213/tvp151
    15 https://doi.org/10.4213/tvp160
    16 https://doi.org/10.4213/tvp289
    17 https://doi.org/10.4213/tvp4282
    18 schema:datePublished 2013-01
    19 schema:datePublishedReg 2013-01-01
    20 schema:description A coding theorem for entanglement-assisted communication via an infinite-dimensional quantum channel with linear constraints is extended to a natural degree of generality. Relations between the entanglement-assisted classical capacity and χ-capacity of constrained channels are obtained, and conditions for their coincidence are given. Sufficient conditions for continuity of the entanglement-assisted classical capacity as a function of a channel are obtained. Some applications of the obtained results to analysis of Gaussian channels are considered. A general (continuous) version of the fundamental relation between coherent information and the measure of privacy of classical information transmission via an infinite-dimensional quantum channel is proved.
    21 schema:genre research_article
    22 schema:inLanguage en
    23 schema:isAccessibleForFree false
    24 schema:isPartOf N249764b08d5e4af4b03662efd35bf892
    25 Nc81dae338888454683aa530d9cc6e909
    26 sg:journal.1136386
    27 schema:name On classical capacities of infinite-dimensional quantum channels
    28 schema:pagination 15-31
    29 schema:productId N1b4919b99e314e96b354d3e602077c58
    30 N1d881b6b54f947e5a155fd61426fec4f
    31 N766547bd388c4c54be7254604a8c176d
    32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039956480
    33 https://doi.org/10.1134/s003294601301002x
    34 schema:sdDatePublished 2019-04-10T20:45
    35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    36 schema:sdPublisher N1ee0a7289e344693ae5878c61158f486
    37 schema:url http://link.springer.com/10.1134/S003294601301002X
    38 sgo:license sg:explorer/license/
    39 sgo:sdDataset articles
    40 rdf:type schema:ScholarlyArticle
    41 N1b4919b99e314e96b354d3e602077c58 schema:name dimensions_id
    42 schema:value pub.1039956480
    43 rdf:type schema:PropertyValue
    44 N1d881b6b54f947e5a155fd61426fec4f schema:name doi
    45 schema:value 10.1134/s003294601301002x
    46 rdf:type schema:PropertyValue
    47 N1ee0a7289e344693ae5878c61158f486 schema:name Springer Nature - SN SciGraph project
    48 rdf:type schema:Organization
    49 N249764b08d5e4af4b03662efd35bf892 schema:issueNumber 1
    50 rdf:type schema:PublicationIssue
    51 N3d053d1d7b2647fa9f24fd6f767a1fb4 rdf:first sg:person.014741114345.19
    52 rdf:rest rdf:nil
    53 N4a6b13b2424f44bebe5c2255a6f8760d rdf:first sg:person.012742037634.56
    54 rdf:rest N3d053d1d7b2647fa9f24fd6f767a1fb4
    55 N766547bd388c4c54be7254604a8c176d schema:name readcube_id
    56 schema:value be561b7478d9f5f155f377abf3f3c5358952b36b2209350ddc666b3a19aef74a
    57 rdf:type schema:PropertyValue
    58 Nc81dae338888454683aa530d9cc6e909 schema:volumeNumber 49
    59 rdf:type schema:PublicationVolume
    60 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    61 schema:name Physical Sciences
    62 rdf:type schema:DefinedTerm
    63 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
    64 schema:name Quantum Physics
    65 rdf:type schema:DefinedTerm
    66 sg:journal.1136386 schema:issn 0032-9460
    67 1608-3253
    68 schema:name Problems of Information Transmission
    69 rdf:type schema:Periodical
    70 sg:person.012742037634.56 schema:affiliation https://www.grid.ac/institutes/grid.426543.2
    71 schema:familyName Holevo
    72 schema:givenName A. S.
    73 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012742037634.56
    74 rdf:type schema:Person
    75 sg:person.014741114345.19 schema:affiliation https://www.grid.ac/institutes/grid.426543.2
    76 schema:familyName Shirokov
    77 schema:givenName M. E.
    78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014741114345.19
    79 rdf:type schema:Person
    80 sg:pub.10.1007/bf01608390 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005287470
    81 https://doi.org/10.1007/bf01608390
    82 rdf:type schema:CreativeWork
    83 sg:pub.10.1007/s00220-009-0833-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032185904
    84 https://doi.org/10.1007/s00220-009-0833-1
    85 rdf:type schema:CreativeWork
    86 sg:pub.10.1134/s0032946008020014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031865090
    87 https://doi.org/10.1134/s0032946008020014
    88 rdf:type schema:CreativeWork
    89 sg:pub.10.1134/s0032946010030014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009193776
    90 https://doi.org/10.1134/s0032946010030014
    91 rdf:type schema:CreativeWork
    92 sg:pub.10.1134/s0032946012020019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048891999
    93 https://doi.org/10.1134/s0032946012020019
    94 rdf:type schema:CreativeWork
    95 https://doi.org/10.1103/physreva.56.3470 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004368835
    96 rdf:type schema:CreativeWork
    97 https://doi.org/10.1103/physreva.63.022308 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060496888
    98 rdf:type schema:CreativeWork
    99 https://doi.org/10.1103/physrevlett.80.5695 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035334495
    100 rdf:type schema:CreativeWork
    101 https://doi.org/10.1103/physrevlett.83.3081 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015408623
    102 rdf:type schema:CreativeWork
    103 https://doi.org/10.1109/tit.2002.802612 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061649633
    104 rdf:type schema:CreativeWork
    105 https://doi.org/10.4213/tvp151 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072376178
    106 rdf:type schema:CreativeWork
    107 https://doi.org/10.4213/tvp160 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072376209
    108 rdf:type schema:CreativeWork
    109 https://doi.org/10.4213/tvp289 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072376571
    110 rdf:type schema:CreativeWork
    111 https://doi.org/10.4213/tvp4282 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072376951
    112 rdf:type schema:CreativeWork
    113 https://www.grid.ac/institutes/grid.426543.2 schema:alternateName Steklov Mathematical Institute
    114 schema:name Steklov Mathematical Institute, Russian Academy of Sciences, Moscow, Russia
    115 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...