Entanglement-breaking channels in infinite dimensions View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2008-09

AUTHORS

A. S. Holevo

ABSTRACT

In the first part of the paper we give a representation for entanglement-breaking channels in separable Hilbert space that generalizes the “Kraus decomposition with rank-one operators” and use it to describe complementary channels. We also note that coherent information for antidegradable channel is always nonpositive. In the second part, we give necessary and sufficient condition for entanglement breaking for the general quantum Gaussian channel. Application of this condition to one-mode channels provides several new cases where the additivity conjecture holds in the strongest form. More... »

PAGES

171-184

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0032946008030010

DOI

http://dx.doi.org/10.1134/s0032946008030010

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1038732279


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Steklov Mathematical Institute, RAS, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Holevo", 
        "givenName": "A. S.", 
        "id": "sg:person.012742037634.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012742037634.56"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1134/s0032946007010012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004148019", 
          "https://doi.org/10.1134/s0032946007010012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1498000", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021978041"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.027902", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024997734"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.027902", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024997734"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.86.3658", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034700514"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.86.3658", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034700514"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.80.5695", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035334495"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.80.5695", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035334495"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/8/12/310", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036901610"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00220-005-1457-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036935783", 
          "https://doi.org/10.1007/s00220-005-1457-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00220-005-1457-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036935783", 
          "https://doi.org/10.1007/s00220-005-1457-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.74.062307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039309175"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.74.062307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039309175"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0047-259x(73)90028-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039988833"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0034-4877(79)90049-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040301238"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00220-005-1317-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041069227", 
          "https://doi.org/10.1007/s00220-005-1317-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00220-005-1317-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041069227", 
          "https://doi.org/10.1007/s00220-005-1317-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2953685", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044460267"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00220-004-1116-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046003655", 
          "https://doi.org/10.1007/s00220-004-1116-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0071720", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051577135", 
          "https://doi.org/10.1007/bfb0071720"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.532385", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058108745"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0129055x03001709", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062897969"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4213/rm1411", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072369538"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4213/rm91", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072370759"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4213/tvp160", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072376209"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4213/tvp289", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072376571"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/9781860948169_0002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1088730057"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-09", 
    "datePublishedReg": "2008-09-01", 
    "description": "In the first part of the paper we give a representation for entanglement-breaking channels in separable Hilbert space that generalizes the \u201cKraus decomposition with rank-one operators\u201d and use it to describe complementary channels. We also note that coherent information for antidegradable channel is always nonpositive. In the second part, we give necessary and sufficient condition for entanglement breaking for the general quantum Gaussian channel. Application of this condition to one-mode channels provides several new cases where the additivity conjecture holds in the strongest form.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s0032946008030010", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136386", 
        "issn": [
          "0032-9460", 
          "1608-3253"
        ], 
        "name": "Problems of Information Transmission", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "44"
      }
    ], 
    "name": "Entanglement-breaking channels in infinite dimensions", 
    "pagination": "171-184", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b8811969b4eba35d1347fb38648e03d9f043e7ebe87fe2548e7408a804419acc"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0032946008030010"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1038732279"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0032946008030010", 
      "https://app.dimensions.ai/details/publication/pub.1038732279"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T22:24", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000482.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1134/S0032946008030010"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0032946008030010'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0032946008030010'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0032946008030010'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0032946008030010'


 

This table displays all metadata directly associated to this object as RDF triples.

129 TRIPLES      21 PREDICATES      48 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0032946008030010 schema:about anzsrc-for:06
2 anzsrc-for:0601
3 schema:author Nd272c1c2e6264e0392c91fa90a9486fb
4 schema:citation sg:pub.10.1007/bfb0071720
5 sg:pub.10.1007/s00220-004-1116-5
6 sg:pub.10.1007/s00220-005-1317-6
7 sg:pub.10.1007/s00220-005-1457-8
8 sg:pub.10.1134/s0032946007010012
9 https://doi.org/10.1016/0034-4877(79)90049-1
10 https://doi.org/10.1016/0047-259x(73)90028-6
11 https://doi.org/10.1063/1.1498000
12 https://doi.org/10.1063/1.2953685
13 https://doi.org/10.1063/1.532385
14 https://doi.org/10.1088/1367-2630/8/12/310
15 https://doi.org/10.1103/physreva.74.062307
16 https://doi.org/10.1103/physrevlett.80.5695
17 https://doi.org/10.1103/physrevlett.86.3658
18 https://doi.org/10.1103/physrevlett.92.027902
19 https://doi.org/10.1142/9781860948169_0002
20 https://doi.org/10.1142/s0129055x03001709
21 https://doi.org/10.4213/rm1411
22 https://doi.org/10.4213/rm91
23 https://doi.org/10.4213/tvp160
24 https://doi.org/10.4213/tvp289
25 schema:datePublished 2008-09
26 schema:datePublishedReg 2008-09-01
27 schema:description In the first part of the paper we give a representation for entanglement-breaking channels in separable Hilbert space that generalizes the “Kraus decomposition with rank-one operators” and use it to describe complementary channels. We also note that coherent information for antidegradable channel is always nonpositive. In the second part, we give necessary and sufficient condition for entanglement breaking for the general quantum Gaussian channel. Application of this condition to one-mode channels provides several new cases where the additivity conjecture holds in the strongest form.
28 schema:genre research_article
29 schema:inLanguage en
30 schema:isAccessibleForFree true
31 schema:isPartOf N778b89c81b1c499eb747522ffc0ed759
32 N796877751abd442a8bc3d774bf0b92df
33 sg:journal.1136386
34 schema:name Entanglement-breaking channels in infinite dimensions
35 schema:pagination 171-184
36 schema:productId N202dade9b8e44722959a061e8b76cb3b
37 N4a213c408a33484d9b6eb57aaf495a3e
38 N9341b6ddc6434f01890eb7b97c3663b0
39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038732279
40 https://doi.org/10.1134/s0032946008030010
41 schema:sdDatePublished 2019-04-10T22:24
42 schema:sdLicense https://scigraph.springernature.com/explorer/license/
43 schema:sdPublisher N7ee6dabdd18f4963b506ecd113ae2e0f
44 schema:url http://link.springer.com/10.1134/S0032946008030010
45 sgo:license sg:explorer/license/
46 sgo:sdDataset articles
47 rdf:type schema:ScholarlyArticle
48 N202dade9b8e44722959a061e8b76cb3b schema:name readcube_id
49 schema:value b8811969b4eba35d1347fb38648e03d9f043e7ebe87fe2548e7408a804419acc
50 rdf:type schema:PropertyValue
51 N4a213c408a33484d9b6eb57aaf495a3e schema:name doi
52 schema:value 10.1134/s0032946008030010
53 rdf:type schema:PropertyValue
54 N778b89c81b1c499eb747522ffc0ed759 schema:issueNumber 3
55 rdf:type schema:PublicationIssue
56 N796877751abd442a8bc3d774bf0b92df schema:volumeNumber 44
57 rdf:type schema:PublicationVolume
58 N7ee6dabdd18f4963b506ecd113ae2e0f schema:name Springer Nature - SN SciGraph project
59 rdf:type schema:Organization
60 N9341b6ddc6434f01890eb7b97c3663b0 schema:name dimensions_id
61 schema:value pub.1038732279
62 rdf:type schema:PropertyValue
63 Nd272c1c2e6264e0392c91fa90a9486fb rdf:first sg:person.012742037634.56
64 rdf:rest rdf:nil
65 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
66 schema:name Biological Sciences
67 rdf:type schema:DefinedTerm
68 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
69 schema:name Biochemistry and Cell Biology
70 rdf:type schema:DefinedTerm
71 sg:journal.1136386 schema:issn 0032-9460
72 1608-3253
73 schema:name Problems of Information Transmission
74 rdf:type schema:Periodical
75 sg:person.012742037634.56 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
76 schema:familyName Holevo
77 schema:givenName A. S.
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012742037634.56
79 rdf:type schema:Person
80 sg:pub.10.1007/bfb0071720 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051577135
81 https://doi.org/10.1007/bfb0071720
82 rdf:type schema:CreativeWork
83 sg:pub.10.1007/s00220-004-1116-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046003655
84 https://doi.org/10.1007/s00220-004-1116-5
85 rdf:type schema:CreativeWork
86 sg:pub.10.1007/s00220-005-1317-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041069227
87 https://doi.org/10.1007/s00220-005-1317-6
88 rdf:type schema:CreativeWork
89 sg:pub.10.1007/s00220-005-1457-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036935783
90 https://doi.org/10.1007/s00220-005-1457-8
91 rdf:type schema:CreativeWork
92 sg:pub.10.1134/s0032946007010012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004148019
93 https://doi.org/10.1134/s0032946007010012
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1016/0034-4877(79)90049-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040301238
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1016/0047-259x(73)90028-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039988833
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1063/1.1498000 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021978041
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1063/1.2953685 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044460267
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1063/1.532385 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058108745
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1088/1367-2630/8/12/310 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036901610
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1103/physreva.74.062307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039309175
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1103/physrevlett.80.5695 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035334495
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1103/physrevlett.86.3658 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034700514
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1103/physrevlett.92.027902 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024997734
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1142/9781860948169_0002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1088730057
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1142/s0129055x03001709 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062897969
118 rdf:type schema:CreativeWork
119 https://doi.org/10.4213/rm1411 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072369538
120 rdf:type schema:CreativeWork
121 https://doi.org/10.4213/rm91 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072370759
122 rdf:type schema:CreativeWork
123 https://doi.org/10.4213/tvp160 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072376209
124 rdf:type schema:CreativeWork
125 https://doi.org/10.4213/tvp289 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072376571
126 rdf:type schema:CreativeWork
127 https://www.grid.ac/institutes/grid.4886.2 schema:alternateName Russian Academy of Sciences
128 schema:name Steklov Mathematical Institute, RAS, Moscow, Russia
129 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...