Magnetic Properties of the Fe63.5Ni10Cu1Nb3Si13.5B9 Alloy Nanocrystallized in the Presence of Tensile Stresses View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

V. A. Lukshina, N. V. Dmitrieva, E. G. Volkova, D. A. Shishkin

ABSTRACT

The effect of 10 at % Ni, which was introduced into the classic Finemet Fe73.5Cu1Nb3Si13.5B9 at the expense of the Fe content, on the magnetic properties of the composition has been considered. The alloy was subjected to nanocrystallizing annealing in the presence of tensile stresses and in their absence. It is shown that, similarly to the Ni-free alloy, in the Fe63.5Ni10Cu1Nb3Si13.5B9 alloy subjected to thermomechanical treatment, the magnetic anisotropy with the easy magnetization direction across the ribbon axis (transverse induced magnetic anisotropy) is induced. It was found that the 10 at % Ni addition almost does not affect the value of magnetic anisotropy constant induced under thermomechanical treatment and decelerates the process of magnetic anisotropy inducing at σ ≤ 200 MPa. The Ni-containing alloy subjected to nanocrystallizing annealing (at 520°C) in the presence of tensile stresses and in their absence demonstrates the more than 200-fold increase in the coercive force as the annealing time increases from 1 to 4 h, whereas the coercive force of the Ni-free alloy is almost unchanged. This is likely to be related to the appearance of new structural components in the Ni-alloyed composition upon annealing. More... »

PAGES

320-324

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0031918x19040070

DOI

http://dx.doi.org/10.1134/s0031918x19040070

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1116601721


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Ural Federal University Named after the First President of Russia B.N. Yeltsin, 620083, Ekaterinburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.412761.7", 
          "name": [
            "Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, 620108, Ekaterinburg, Russia", 
            "Ural Federal University Named after the First President of Russia B.N. Yeltsin, 620083, Ekaterinburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lukshina", 
        "givenName": "V. A.", 
        "id": "sg:person.015101525461.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015101525461.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, 620108, Ekaterinburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.426536.0", 
          "name": [
            "Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, 620108, Ekaterinburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dmitrieva", 
        "givenName": "N. V.", 
        "id": "sg:person.012700005372.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012700005372.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, 620108, Ekaterinburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.426536.0", 
          "name": [
            "Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, 620108, Ekaterinburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Volkova", 
        "givenName": "E. G.", 
        "id": "sg:person.011542542354.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011542542354.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ural Federal University Named after the First President of Russia B.N. Yeltsin, 620083, Ekaterinburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.412761.7", 
          "name": [
            "Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, 620108, Ekaterinburg, Russia", 
            "Ural Federal University Named after the First President of Russia B.N. Yeltsin, 620083, Ekaterinburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shishkin", 
        "givenName": "D. A.", 
        "id": "sg:person.013143621400.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013143621400.41"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1134/s0031918x0904005x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015163585", 
          "https://doi.org/10.1134/s0031918x0904005x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0031918x17100052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092344095", 
          "https://doi.org/10.1134/s0031918x17100052"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1063783413030098", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018487082", 
          "https://doi.org/10.1134/s1063783413030098"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0031918x18020102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101537968", 
          "https://doi.org/10.1134/s0031918x18020102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0031918x17060096", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090343234", 
          "https://doi.org/10.1134/s0031918x17060096"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0031918x17060047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090336362", 
          "https://doi.org/10.1134/s0031918x17060047"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "The effect of 10 at % Ni, which was introduced into the classic Finemet Fe73.5Cu1Nb3Si13.5B9 at the expense of the Fe content, on the magnetic properties of the composition has been considered. The alloy was subjected to nanocrystallizing annealing in the presence of tensile stresses and in their absence. It is shown that, similarly to the Ni-free alloy, in the Fe63.5Ni10Cu1Nb3Si13.5B9 alloy subjected to thermomechanical treatment, the magnetic anisotropy with the easy magnetization direction across the ribbon axis (transverse induced magnetic anisotropy) is induced. It was found that the 10 at % Ni addition almost does not affect the value of magnetic anisotropy constant induced under thermomechanical treatment and decelerates the process of magnetic anisotropy inducing at \u03c3 \u2264 200 MPa. The Ni-containing alloy subjected to nanocrystallizing annealing (at 520\u00b0C) in the presence of tensile stresses and in their absence demonstrates the more than 200-fold increase in the coercive force as the annealing time increases from 1 to 4 h, whereas the coercive force of the Ni-free alloy is almost unchanged. This is likely to be related to the appearance of new structural components in the Ni-alloyed composition upon annealing.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s0031918x19040070", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1295452", 
        "issn": [
          "0015-3230", 
          "0031-918X"
        ], 
        "name": "Physics of Metals and Metallography", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "120"
      }
    ], 
    "keywords": [
      "Ni-free alloy", 
      "tensile stress", 
      "thermomechanical treatment", 
      "coercive force", 
      "magnetic anisotropy", 
      "magnetic properties", 
      "Ni addition", 
      "alloy", 
      "annealing", 
      "new structural components", 
      "ribbon axis", 
      "magnetic anisotropy constants", 
      "structural components", 
      "Ni", 
      "Fe content", 
      "magnetization direction", 
      "easy magnetization direction", 
      "force", 
      "anisotropy constants", 
      "MPa", 
      "properties", 
      "stress", 
      "anisotropy", 
      "composition", 
      "direction", 
      "process", 
      "components", 
      "content", 
      "values", 
      "presence", 
      "constants", 
      "axis", 
      "time", 
      "addition", 
      "increase", 
      "effect", 
      "expense", 
      "appearance", 
      "treatment", 
      "absence"
    ], 
    "name": "Magnetic Properties of the Fe63.5Ni10Cu1Nb3Si13.5B9 Alloy Nanocrystallized in the Presence of Tensile Stresses", 
    "pagination": "320-324", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1116601721"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0031918x19040070"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0031918x19040070", 
      "https://app.dimensions.ai/details/publication/pub.1116601721"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-10T10:21", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_814.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s0031918x19040070"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0031918x19040070'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0031918x19040070'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0031918x19040070'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0031918x19040070'


 

This table displays all metadata directly associated to this object as RDF triples.

147 TRIPLES      22 PREDICATES      72 URIs      58 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0031918x19040070 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N2d743fca4f5e4a07a09f1b33cef43090
4 schema:citation sg:pub.10.1134/s0031918x0904005x
5 sg:pub.10.1134/s0031918x17060047
6 sg:pub.10.1134/s0031918x17060096
7 sg:pub.10.1134/s0031918x17100052
8 sg:pub.10.1134/s0031918x18020102
9 sg:pub.10.1134/s1063783413030098
10 schema:datePublished 2019-04
11 schema:datePublishedReg 2019-04-01
12 schema:description The effect of 10 at % Ni, which was introduced into the classic Finemet Fe73.5Cu1Nb3Si13.5B9 at the expense of the Fe content, on the magnetic properties of the composition has been considered. The alloy was subjected to nanocrystallizing annealing in the presence of tensile stresses and in their absence. It is shown that, similarly to the Ni-free alloy, in the Fe63.5Ni10Cu1Nb3Si13.5B9 alloy subjected to thermomechanical treatment, the magnetic anisotropy with the easy magnetization direction across the ribbon axis (transverse induced magnetic anisotropy) is induced. It was found that the 10 at % Ni addition almost does not affect the value of magnetic anisotropy constant induced under thermomechanical treatment and decelerates the process of magnetic anisotropy inducing at σ ≤ 200 MPa. The Ni-containing alloy subjected to nanocrystallizing annealing (at 520°C) in the presence of tensile stresses and in their absence demonstrates the more than 200-fold increase in the coercive force as the annealing time increases from 1 to 4 h, whereas the coercive force of the Ni-free alloy is almost unchanged. This is likely to be related to the appearance of new structural components in the Ni-alloyed composition upon annealing.
13 schema:genre article
14 schema:inLanguage en
15 schema:isAccessibleForFree false
16 schema:isPartOf N13d2e9e0808b48d094cc704c68de2f78
17 Nbc18d4f0bf2e44d1bf8444377fede72e
18 sg:journal.1295452
19 schema:keywords Fe content
20 MPa
21 Ni
22 Ni addition
23 Ni-free alloy
24 absence
25 addition
26 alloy
27 anisotropy
28 anisotropy constants
29 annealing
30 appearance
31 axis
32 coercive force
33 components
34 composition
35 constants
36 content
37 direction
38 easy magnetization direction
39 effect
40 expense
41 force
42 increase
43 magnetic anisotropy
44 magnetic anisotropy constants
45 magnetic properties
46 magnetization direction
47 new structural components
48 presence
49 process
50 properties
51 ribbon axis
52 stress
53 structural components
54 tensile stress
55 thermomechanical treatment
56 time
57 treatment
58 values
59 schema:name Magnetic Properties of the Fe63.5Ni10Cu1Nb3Si13.5B9 Alloy Nanocrystallized in the Presence of Tensile Stresses
60 schema:pagination 320-324
61 schema:productId Nc0ad06f3c3e246a3b06041f648d570a3
62 Nd15a1c1e8b81470e9d71492ee423c3ed
63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1116601721
64 https://doi.org/10.1134/s0031918x19040070
65 schema:sdDatePublished 2022-05-10T10:21
66 schema:sdLicense https://scigraph.springernature.com/explorer/license/
67 schema:sdPublisher Nd8ed805cffc348028bac4d98555d23b1
68 schema:url https://doi.org/10.1134/s0031918x19040070
69 sgo:license sg:explorer/license/
70 sgo:sdDataset articles
71 rdf:type schema:ScholarlyArticle
72 N13d2e9e0808b48d094cc704c68de2f78 schema:volumeNumber 120
73 rdf:type schema:PublicationVolume
74 N2d743fca4f5e4a07a09f1b33cef43090 rdf:first sg:person.015101525461.43
75 rdf:rest Na589ce00f49c4daea906398aacfdae77
76 Na589ce00f49c4daea906398aacfdae77 rdf:first sg:person.012700005372.35
77 rdf:rest Nb322305683eb4bdba93fd86417d88bcb
78 Na6de1d31fbe3458eab1f3957eabc0efa rdf:first sg:person.013143621400.41
79 rdf:rest rdf:nil
80 Nb322305683eb4bdba93fd86417d88bcb rdf:first sg:person.011542542354.38
81 rdf:rest Na6de1d31fbe3458eab1f3957eabc0efa
82 Nbc18d4f0bf2e44d1bf8444377fede72e schema:issueNumber 4
83 rdf:type schema:PublicationIssue
84 Nc0ad06f3c3e246a3b06041f648d570a3 schema:name dimensions_id
85 schema:value pub.1116601721
86 rdf:type schema:PropertyValue
87 Nd15a1c1e8b81470e9d71492ee423c3ed schema:name doi
88 schema:value 10.1134/s0031918x19040070
89 rdf:type schema:PropertyValue
90 Nd8ed805cffc348028bac4d98555d23b1 schema:name Springer Nature - SN SciGraph project
91 rdf:type schema:Organization
92 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
93 schema:name Engineering
94 rdf:type schema:DefinedTerm
95 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
96 schema:name Materials Engineering
97 rdf:type schema:DefinedTerm
98 sg:journal.1295452 schema:issn 0015-3230
99 0031-918X
100 schema:name Physics of Metals and Metallography
101 schema:publisher Pleiades Publishing
102 rdf:type schema:Periodical
103 sg:person.011542542354.38 schema:affiliation grid-institutes:grid.426536.0
104 schema:familyName Volkova
105 schema:givenName E. G.
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011542542354.38
107 rdf:type schema:Person
108 sg:person.012700005372.35 schema:affiliation grid-institutes:grid.426536.0
109 schema:familyName Dmitrieva
110 schema:givenName N. V.
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012700005372.35
112 rdf:type schema:Person
113 sg:person.013143621400.41 schema:affiliation grid-institutes:grid.412761.7
114 schema:familyName Shishkin
115 schema:givenName D. A.
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013143621400.41
117 rdf:type schema:Person
118 sg:person.015101525461.43 schema:affiliation grid-institutes:grid.412761.7
119 schema:familyName Lukshina
120 schema:givenName V. A.
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015101525461.43
122 rdf:type schema:Person
123 sg:pub.10.1134/s0031918x0904005x schema:sameAs https://app.dimensions.ai/details/publication/pub.1015163585
124 https://doi.org/10.1134/s0031918x0904005x
125 rdf:type schema:CreativeWork
126 sg:pub.10.1134/s0031918x17060047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090336362
127 https://doi.org/10.1134/s0031918x17060047
128 rdf:type schema:CreativeWork
129 sg:pub.10.1134/s0031918x17060096 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090343234
130 https://doi.org/10.1134/s0031918x17060096
131 rdf:type schema:CreativeWork
132 sg:pub.10.1134/s0031918x17100052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092344095
133 https://doi.org/10.1134/s0031918x17100052
134 rdf:type schema:CreativeWork
135 sg:pub.10.1134/s0031918x18020102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101537968
136 https://doi.org/10.1134/s0031918x18020102
137 rdf:type schema:CreativeWork
138 sg:pub.10.1134/s1063783413030098 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018487082
139 https://doi.org/10.1134/s1063783413030098
140 rdf:type schema:CreativeWork
141 grid-institutes:grid.412761.7 schema:alternateName Ural Federal University Named after the First President of Russia B.N. Yeltsin, 620083, Ekaterinburg, Russia
142 schema:name Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, 620108, Ekaterinburg, Russia
143 Ural Federal University Named after the First President of Russia B.N. Yeltsin, 620083, Ekaterinburg, Russia
144 rdf:type schema:Organization
145 grid-institutes:grid.426536.0 schema:alternateName Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, 620108, Ekaterinburg, Russia
146 schema:name Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, 620108, Ekaterinburg, Russia
147 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...