Magnetic circular dichroism in the hard X-ray range View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-12-17

AUTHORS

A. Rogalev, F. Wilhelm

ABSTRACT

An overview of X-ray magnetic circular dichroism (XMCD) spectroscopy in the hard X-ray range is presented. A short historical overview shows how this technique has evolved from the early days of X-ray physics to become a workhorse technique in the modern magnetism research As with all X-ray spectroscopies, XMCD has the advantage of being element specific. Interpretation of the spectra based on magneto-optical sum rules can provide unique information about spin and orbital moment carried by absorbing atom in both amplitude and direction, can infer magnetic interactions from element selective magnetization curves, can allow separation of magnetic and non-magnetic components in heterogeneous systems. The review details the technology currently available for XMCD measurements in the hard X-ray range referring to the ESRF beamline ID12 as an example. The strengths of hard X-ray magnetic circular dichroism technique are illustrated with a wide variety of representative examples, such as actinide based ferromagnets, paramagnetism in metals, pure metallic nanoparticles, exchange spring magnets, half metallic ferromagnets, magnetism at interfaces, and dilute magnetic semiconductors. In this way, we aim to encourage researchers from various scientific communities to consider XMCD as a tool to understanding the electronic and magnetic properties of their samples. More... »

PAGES

1285-1336

References to SciGraph publications

  • 1926-12. Zur Frage nach der magnetischen Drehung der Polarisationsebene primärer Röntgenstrahlen in ZEITSCHRIFT FÜR PHYSIK A HADRONS AND NUCLEI
  • 2007-01. Multiferroics: a magnetic twist for ferroelectricity in NATURE MATERIALS
  • 2005-05. Sum rules for X-ray magnetic circular dichroism spectra in strongly correlated ferromagnets in THE EUROPEAN PHYSICAL JOURNAL B
  • 2000-11. Band structure and atomic sum rules for X-ray dichroism in THE EUROPEAN PHYSICAL JOURNAL B
  • 2009-11-15. Experimental probing of the interplay between ferromagnetism and localization in (Ga, Mn)As in NATURE PHYSICS
  • 2004-12. Lensless imaging of magnetic nanostructures by X-ray spectro-holography in NATURE
  • 1999-09. A ferromagnet having no net magnetic moment in NATURE
  • 1983-12. Anisotropy of x-rays and spin depencence of the photoabsorption of circularly polarized soft x-rays in magnetized Fe in HYPERFINE INTERACTIONS
  • 2002-03. Ferromagnetism in one-dimensional monatomic metal chains in NATURE
  • 2013-02-25. Direct evidence for significant spin-polarization of EuS in Co/EuS multilayers at room temperature in SCIENTIFIC REPORTS
  • 2005-03. Unconventional superconductivity in PuCoGa5 in NATURE
  • 1998-10-15. Room-temperature magnetoresistance in an oxide material with an ordered double-perovskite structure in NATURE
  • 2007-01-01. FERRIMAGNETIC DOUBLE PEROVSKITES AS SPINTRONIC MATERIALS* in ELECTRON CORRELATION IN NEW MATERIALS AND NANOSYSTEMS
  • 1996-11. A compound refractive lens for focusing high-energy X-rays in NATURE
  • 2011-08-23. Taming spin currents in NATURE MATERIALS
  • 2006. X-ray Magnetic Circular Dichroism: Historical Perspective and Recent Highlights in MAGNETISM: A SYNCHROTRON RADIATION APPROACH
  • 2010-09-26. Spin Seebeck insulator in NATURE MATERIALS
  • 2001-10-05. Instrumentation Developments for Polarization Dependent X-ray Spectroscopies in MAGNETISM AND SYNCHROTRON RADIATION
  • 2003-08. X-ray optical activity: Applications of sum rules in JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS
  • 1988-03. Spin-dependent photoabsorption at theL-edges of ferromagnetic Gd and Tb metal in ZEITSCHRIFT FÜR PHYSIK B CONDENSED MATTER
  • 2010-01-10. Current-driven spin torque induced by the Rashba effect in a ferromagnetic metal layer in NATURE MATERIALS
  • 2004-10-17. Electrical spin injection from an n-type ferromagnetic semiconductor into a III–V device heterostructure in NATURE MATERIALS
  • 1984. Magnetic XANES in EXAFS AND NEAR EDGE STRUCTURE III
  • 2014-07-21. The dipole moment of the spin density as a local indicator for phase transitions in SCIENTIFIC REPORTS
  • 2014-12-08. Strong magneto-chiral dichroism in a paramagnetic molecular helix observed by hard X-ray in NATURE PHYSICS
  • 1896-02. The Röntgen Rays in NATURE
  • 2002-03. Exchange-biased quantum tunnelling in a supramolecular dimer of single-molecule magnets in NATURE
  • 1987. Linearized band structure methods in ELECTRONIC BAND STRUCTURE AND ITS APPLICATIONS
  • 2010-03. Transmission of electrical signals by spin-wave interconversion in a magnetic insulator in NATURE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1134/s0031918x15130013

    DOI

    http://dx.doi.org/10.1134/s0031918x15130013

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1014066524


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Other Physical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "The European Synchrotron, ESRF, 71 avenue des Martyrs, 3800, Grenoble, France", 
              "id": "http://www.grid.ac/institutes/grid.5398.7", 
              "name": [
                "The European Synchrotron, ESRF, 71 avenue des Martyrs, 3800, Grenoble, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rogalev", 
            "givenName": "A.", 
            "id": "sg:person.01312655701.44", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01312655701.44"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "The European Synchrotron, ESRF, 71 avenue des Martyrs, 3800, Grenoble, France", 
              "id": "http://www.grid.ac/institutes/grid.5398.7", 
              "name": [
                "The European Synchrotron, ESRF, 71 avenue des Martyrs, 3800, Grenoble, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wilhelm", 
            "givenName": "F.", 
            "id": "sg:person.01327015542.12", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01327015542.12"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/3-540-44954-x_3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036773883", 
              "https://doi.org/10.1007/3-540-44954-x_3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1140/epjb/e2005-00157-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032214205", 
              "https://doi.org/10.1140/epjb/e2005-00157-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/053391c0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022630964", 
              "https://doi.org/10.1038/053391c0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature03428", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044790681", 
              "https://doi.org/10.1038/nature03428"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3540180982_1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027816422", 
              "https://doi.org/10.1007/3540180982_1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02147415", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009850361", 
              "https://doi.org/10.1007/bf02147415"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat1804", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028942997", 
              "https://doi.org/10.1038/nmat1804"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/384049a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025028752", 
              "https://doi.org/10.1038/384049a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-33242-1_4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025245703", 
              "https://doi.org/10.1007/3-540-33242-1_4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s100510070047", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046942325", 
              "https://doi.org/10.1007/s100510070047"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/416406a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025493574", 
              "https://doi.org/10.1038/416406a"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat2856", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008851460", 
              "https://doi.org/10.1038/nmat2856"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature03139", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052230796", 
              "https://doi.org/10.1038/nature03139"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/1.1609001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027008894", 
              "https://doi.org/10.1134/1.1609001"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/27167", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036974618", 
              "https://doi.org/10.1038/27167"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys1455", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042322468", 
              "https://doi.org/10.1038/nphys1455"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/43634", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051279646", 
              "https://doi.org/10.1038/43634"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/416301a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012908528", 
              "https://doi.org/10.1038/416301a"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08876", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023720265", 
              "https://doi.org/10.1038/nature08876"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat2613", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005987470", 
              "https://doi.org/10.1038/nmat2613"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01312156", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052420326", 
              "https://doi.org/10.1007/bf01312156"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep01333", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029023504", 
              "https://doi.org/10.1038/srep01333"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys3152", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040365457", 
              "https://doi.org/10.1038/nphys3152"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat1239", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050158354", 
              "https://doi.org/10.1038/nmat1239"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep05760", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018034590", 
              "https://doi.org/10.1038/srep05760"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat3097", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052557919", 
              "https://doi.org/10.1038/nmat3097"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01405254", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006822919", 
              "https://doi.org/10.1007/bf01405254"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-46522-2_132", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027133159", 
              "https://doi.org/10.1007/978-3-642-46522-2_132"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4020-5659-8_31", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045749661", 
              "https://doi.org/10.1007/978-1-4020-5659-8_31"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2015-12-17", 
        "datePublishedReg": "2015-12-17", 
        "description": "An overview of X-ray magnetic circular dichroism (XMCD) spectroscopy in the hard X-ray range is presented. A short historical overview shows how this technique has evolved from the early days of X-ray physics to become a workhorse technique in the modern magnetism research As with all X-ray spectroscopies, XMCD has the advantage of being element specific. Interpretation of the spectra based on magneto-optical sum rules can provide unique information about spin and orbital moment carried by absorbing atom in both amplitude and direction, can infer magnetic interactions from element selective magnetization curves, can allow separation of magnetic and non-magnetic components in heterogeneous systems. The review details the technology currently available for XMCD measurements in the hard X-ray range referring to the ESRF beamline ID12 as an example. The strengths of hard X-ray magnetic circular dichroism technique are illustrated with a wide variety of representative examples, such as actinide based ferromagnets, paramagnetism in metals, pure metallic nanoparticles, exchange spring magnets, half metallic ferromagnets, magnetism at interfaces, and dilute magnetic semiconductors. In this way, we aim to encourage researchers from various scientific communities to consider XMCD as a tool to understanding the electronic and magnetic properties of their samples.", 
        "genre": "article", 
        "id": "sg:pub.10.1134/s0031918x15130013", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1295452", 
            "issn": [
              "0015-3230", 
              "0031-918X"
            ], 
            "name": "Physics of Metals and Metallography", 
            "publisher": "Pleiades Publishing", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "13", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "116"
          }
        ], 
        "keywords": [
          "ray range", 
          "magneto-optical sum rules", 
          "ray magnetic circular dichroism spectroscopy", 
          "magnetic circular dichroism technique", 
          "magnetic circular dichroism spectroscopy", 
          "ESRF beamline ID12", 
          "magnetic circular dichroism", 
          "pure metallic nanoparticles", 
          "non-magnetic components", 
          "half metallic ferromagnets", 
          "ray physics", 
          "XMCD measurements", 
          "exchange spring magnet", 
          "circular dichroism techniques", 
          "magnetism research", 
          "orbital moment", 
          "ray spectroscopy", 
          "magnetic semiconductors", 
          "circular dichroism spectroscopy", 
          "magnetic interactions", 
          "workhorse technique", 
          "metallic nanoparticles", 
          "dichroism techniques", 
          "circular dichroism", 
          "XMCD", 
          "metallic ferromagnets", 
          "spring magnets", 
          "dichroism spectroscopy", 
          "sum rules", 
          "magnetic properties", 
          "magnetization curves", 
          "unique information", 
          "spectroscopy", 
          "ferromagnet", 
          "short historical overview", 
          "ID12", 
          "physics", 
          "semiconductors", 
          "spin", 
          "magnetism", 
          "atoms", 
          "dichroism", 
          "magnets", 
          "paramagnetism", 
          "spectra", 
          "range", 
          "representative examples", 
          "actinides", 
          "nanoparticles", 
          "measurements", 
          "moment", 
          "technique", 
          "early days", 
          "amplitude", 
          "properties", 
          "interface", 
          "interaction", 
          "metals", 
          "direction", 
          "scientific community", 
          "separation", 
          "heterogeneous systems", 
          "example", 
          "strength", 
          "wide variety", 
          "overview", 
          "interpretation", 
          "curves", 
          "historical overview", 
          "components", 
          "system", 
          "samples", 
          "elements", 
          "advantages", 
          "technology", 
          "way", 
          "information", 
          "variety", 
          "tool", 
          "rules", 
          "review", 
          "research", 
          "researchers", 
          "days", 
          "community", 
          "modern magnetism research", 
          "element selective magnetization curves", 
          "selective magnetization curves", 
          "beamline ID12"
        ], 
        "name": "Magnetic circular dichroism in the hard X-ray range", 
        "pagination": "1285-1336", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1014066524"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1134/s0031918x15130013"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1134/s0031918x15130013", 
          "https://app.dimensions.ai/details/publication/pub.1014066524"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-12-01T19:34", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_672.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1134/s0031918x15130013"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0031918x15130013'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0031918x15130013'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0031918x15130013'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0031918x15130013'


     

    This table displays all metadata directly associated to this object as RDF triples.

    270 TRIPLES      22 PREDICATES      143 URIs      106 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1134/s0031918x15130013 schema:about anzsrc-for:02
    2 anzsrc-for:0299
    3 schema:author N35be7ccd08d94ff0b88170831d71cd98
    4 schema:citation sg:pub.10.1007/3-540-33242-1_4
    5 sg:pub.10.1007/3-540-44954-x_3
    6 sg:pub.10.1007/3540180982_1
    7 sg:pub.10.1007/978-1-4020-5659-8_31
    8 sg:pub.10.1007/978-3-642-46522-2_132
    9 sg:pub.10.1007/bf01312156
    10 sg:pub.10.1007/bf01405254
    11 sg:pub.10.1007/bf02147415
    12 sg:pub.10.1007/s100510070047
    13 sg:pub.10.1038/053391c0
    14 sg:pub.10.1038/27167
    15 sg:pub.10.1038/384049a0
    16 sg:pub.10.1038/416301a
    17 sg:pub.10.1038/416406a
    18 sg:pub.10.1038/43634
    19 sg:pub.10.1038/nature03139
    20 sg:pub.10.1038/nature03428
    21 sg:pub.10.1038/nature08876
    22 sg:pub.10.1038/nmat1239
    23 sg:pub.10.1038/nmat1804
    24 sg:pub.10.1038/nmat2613
    25 sg:pub.10.1038/nmat2856
    26 sg:pub.10.1038/nmat3097
    27 sg:pub.10.1038/nphys1455
    28 sg:pub.10.1038/nphys3152
    29 sg:pub.10.1038/srep01333
    30 sg:pub.10.1038/srep05760
    31 sg:pub.10.1134/1.1609001
    32 sg:pub.10.1140/epjb/e2005-00157-8
    33 schema:datePublished 2015-12-17
    34 schema:datePublishedReg 2015-12-17
    35 schema:description An overview of X-ray magnetic circular dichroism (XMCD) spectroscopy in the hard X-ray range is presented. A short historical overview shows how this technique has evolved from the early days of X-ray physics to become a workhorse technique in the modern magnetism research As with all X-ray spectroscopies, XMCD has the advantage of being element specific. Interpretation of the spectra based on magneto-optical sum rules can provide unique information about spin and orbital moment carried by absorbing atom in both amplitude and direction, can infer magnetic interactions from element selective magnetization curves, can allow separation of magnetic and non-magnetic components in heterogeneous systems. The review details the technology currently available for XMCD measurements in the hard X-ray range referring to the ESRF beamline ID12 as an example. The strengths of hard X-ray magnetic circular dichroism technique are illustrated with a wide variety of representative examples, such as actinide based ferromagnets, paramagnetism in metals, pure metallic nanoparticles, exchange spring magnets, half metallic ferromagnets, magnetism at interfaces, and dilute magnetic semiconductors. In this way, we aim to encourage researchers from various scientific communities to consider XMCD as a tool to understanding the electronic and magnetic properties of their samples.
    36 schema:genre article
    37 schema:inLanguage en
    38 schema:isAccessibleForFree false
    39 schema:isPartOf N922e616db59f4f53a9680093a1c5d1f4
    40 N974fa64836c047b8a16945c987fe1df0
    41 sg:journal.1295452
    42 schema:keywords ESRF beamline ID12
    43 ID12
    44 XMCD
    45 XMCD measurements
    46 actinides
    47 advantages
    48 amplitude
    49 atoms
    50 beamline ID12
    51 circular dichroism
    52 circular dichroism spectroscopy
    53 circular dichroism techniques
    54 community
    55 components
    56 curves
    57 days
    58 dichroism
    59 dichroism spectroscopy
    60 dichroism techniques
    61 direction
    62 early days
    63 element selective magnetization curves
    64 elements
    65 example
    66 exchange spring magnet
    67 ferromagnet
    68 half metallic ferromagnets
    69 heterogeneous systems
    70 historical overview
    71 information
    72 interaction
    73 interface
    74 interpretation
    75 magnetic circular dichroism
    76 magnetic circular dichroism spectroscopy
    77 magnetic circular dichroism technique
    78 magnetic interactions
    79 magnetic properties
    80 magnetic semiconductors
    81 magnetism
    82 magnetism research
    83 magnetization curves
    84 magneto-optical sum rules
    85 magnets
    86 measurements
    87 metallic ferromagnets
    88 metallic nanoparticles
    89 metals
    90 modern magnetism research
    91 moment
    92 nanoparticles
    93 non-magnetic components
    94 orbital moment
    95 overview
    96 paramagnetism
    97 physics
    98 properties
    99 pure metallic nanoparticles
    100 range
    101 ray magnetic circular dichroism spectroscopy
    102 ray physics
    103 ray range
    104 ray spectroscopy
    105 representative examples
    106 research
    107 researchers
    108 review
    109 rules
    110 samples
    111 scientific community
    112 selective magnetization curves
    113 semiconductors
    114 separation
    115 short historical overview
    116 spectra
    117 spectroscopy
    118 spin
    119 spring magnets
    120 strength
    121 sum rules
    122 system
    123 technique
    124 technology
    125 tool
    126 unique information
    127 variety
    128 way
    129 wide variety
    130 workhorse technique
    131 schema:name Magnetic circular dichroism in the hard X-ray range
    132 schema:pagination 1285-1336
    133 schema:productId N9f71c4dc9cf9454a9445b1c5ea8d5d2d
    134 Ne783f531d4a341c89951b236cfe12e8a
    135 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014066524
    136 https://doi.org/10.1134/s0031918x15130013
    137 schema:sdDatePublished 2021-12-01T19:34
    138 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    139 schema:sdPublisher N0f31ecbe11794c0faaa1e7f92fd5a3fb
    140 schema:url https://doi.org/10.1134/s0031918x15130013
    141 sgo:license sg:explorer/license/
    142 sgo:sdDataset articles
    143 rdf:type schema:ScholarlyArticle
    144 N0f31ecbe11794c0faaa1e7f92fd5a3fb schema:name Springer Nature - SN SciGraph project
    145 rdf:type schema:Organization
    146 N35be7ccd08d94ff0b88170831d71cd98 rdf:first sg:person.01312655701.44
    147 rdf:rest Ne0a2586675664a8193580d9a0e75bebe
    148 N922e616db59f4f53a9680093a1c5d1f4 schema:issueNumber 13
    149 rdf:type schema:PublicationIssue
    150 N974fa64836c047b8a16945c987fe1df0 schema:volumeNumber 116
    151 rdf:type schema:PublicationVolume
    152 N9f71c4dc9cf9454a9445b1c5ea8d5d2d schema:name doi
    153 schema:value 10.1134/s0031918x15130013
    154 rdf:type schema:PropertyValue
    155 Ne0a2586675664a8193580d9a0e75bebe rdf:first sg:person.01327015542.12
    156 rdf:rest rdf:nil
    157 Ne783f531d4a341c89951b236cfe12e8a schema:name dimensions_id
    158 schema:value pub.1014066524
    159 rdf:type schema:PropertyValue
    160 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    161 schema:name Physical Sciences
    162 rdf:type schema:DefinedTerm
    163 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
    164 schema:name Other Physical Sciences
    165 rdf:type schema:DefinedTerm
    166 sg:journal.1295452 schema:issn 0015-3230
    167 0031-918X
    168 schema:name Physics of Metals and Metallography
    169 schema:publisher Pleiades Publishing
    170 rdf:type schema:Periodical
    171 sg:person.01312655701.44 schema:affiliation grid-institutes:grid.5398.7
    172 schema:familyName Rogalev
    173 schema:givenName A.
    174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01312655701.44
    175 rdf:type schema:Person
    176 sg:person.01327015542.12 schema:affiliation grid-institutes:grid.5398.7
    177 schema:familyName Wilhelm
    178 schema:givenName F.
    179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01327015542.12
    180 rdf:type schema:Person
    181 sg:pub.10.1007/3-540-33242-1_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025245703
    182 https://doi.org/10.1007/3-540-33242-1_4
    183 rdf:type schema:CreativeWork
    184 sg:pub.10.1007/3-540-44954-x_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036773883
    185 https://doi.org/10.1007/3-540-44954-x_3
    186 rdf:type schema:CreativeWork
    187 sg:pub.10.1007/3540180982_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027816422
    188 https://doi.org/10.1007/3540180982_1
    189 rdf:type schema:CreativeWork
    190 sg:pub.10.1007/978-1-4020-5659-8_31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045749661
    191 https://doi.org/10.1007/978-1-4020-5659-8_31
    192 rdf:type schema:CreativeWork
    193 sg:pub.10.1007/978-3-642-46522-2_132 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027133159
    194 https://doi.org/10.1007/978-3-642-46522-2_132
    195 rdf:type schema:CreativeWork
    196 sg:pub.10.1007/bf01312156 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052420326
    197 https://doi.org/10.1007/bf01312156
    198 rdf:type schema:CreativeWork
    199 sg:pub.10.1007/bf01405254 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006822919
    200 https://doi.org/10.1007/bf01405254
    201 rdf:type schema:CreativeWork
    202 sg:pub.10.1007/bf02147415 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009850361
    203 https://doi.org/10.1007/bf02147415
    204 rdf:type schema:CreativeWork
    205 sg:pub.10.1007/s100510070047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046942325
    206 https://doi.org/10.1007/s100510070047
    207 rdf:type schema:CreativeWork
    208 sg:pub.10.1038/053391c0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022630964
    209 https://doi.org/10.1038/053391c0
    210 rdf:type schema:CreativeWork
    211 sg:pub.10.1038/27167 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036974618
    212 https://doi.org/10.1038/27167
    213 rdf:type schema:CreativeWork
    214 sg:pub.10.1038/384049a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025028752
    215 https://doi.org/10.1038/384049a0
    216 rdf:type schema:CreativeWork
    217 sg:pub.10.1038/416301a schema:sameAs https://app.dimensions.ai/details/publication/pub.1012908528
    218 https://doi.org/10.1038/416301a
    219 rdf:type schema:CreativeWork
    220 sg:pub.10.1038/416406a schema:sameAs https://app.dimensions.ai/details/publication/pub.1025493574
    221 https://doi.org/10.1038/416406a
    222 rdf:type schema:CreativeWork
    223 sg:pub.10.1038/43634 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051279646
    224 https://doi.org/10.1038/43634
    225 rdf:type schema:CreativeWork
    226 sg:pub.10.1038/nature03139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052230796
    227 https://doi.org/10.1038/nature03139
    228 rdf:type schema:CreativeWork
    229 sg:pub.10.1038/nature03428 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044790681
    230 https://doi.org/10.1038/nature03428
    231 rdf:type schema:CreativeWork
    232 sg:pub.10.1038/nature08876 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023720265
    233 https://doi.org/10.1038/nature08876
    234 rdf:type schema:CreativeWork
    235 sg:pub.10.1038/nmat1239 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050158354
    236 https://doi.org/10.1038/nmat1239
    237 rdf:type schema:CreativeWork
    238 sg:pub.10.1038/nmat1804 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028942997
    239 https://doi.org/10.1038/nmat1804
    240 rdf:type schema:CreativeWork
    241 sg:pub.10.1038/nmat2613 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005987470
    242 https://doi.org/10.1038/nmat2613
    243 rdf:type schema:CreativeWork
    244 sg:pub.10.1038/nmat2856 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008851460
    245 https://doi.org/10.1038/nmat2856
    246 rdf:type schema:CreativeWork
    247 sg:pub.10.1038/nmat3097 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052557919
    248 https://doi.org/10.1038/nmat3097
    249 rdf:type schema:CreativeWork
    250 sg:pub.10.1038/nphys1455 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042322468
    251 https://doi.org/10.1038/nphys1455
    252 rdf:type schema:CreativeWork
    253 sg:pub.10.1038/nphys3152 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040365457
    254 https://doi.org/10.1038/nphys3152
    255 rdf:type schema:CreativeWork
    256 sg:pub.10.1038/srep01333 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029023504
    257 https://doi.org/10.1038/srep01333
    258 rdf:type schema:CreativeWork
    259 sg:pub.10.1038/srep05760 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018034590
    260 https://doi.org/10.1038/srep05760
    261 rdf:type schema:CreativeWork
    262 sg:pub.10.1134/1.1609001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027008894
    263 https://doi.org/10.1134/1.1609001
    264 rdf:type schema:CreativeWork
    265 sg:pub.10.1140/epjb/e2005-00157-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032214205
    266 https://doi.org/10.1140/epjb/e2005-00157-8
    267 rdf:type schema:CreativeWork
    268 grid-institutes:grid.5398.7 schema:alternateName The European Synchrotron, ESRF, 71 avenue des Martyrs, 3800, Grenoble, France
    269 schema:name The European Synchrotron, ESRF, 71 avenue des Martyrs, 3800, Grenoble, France
    270 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...