Role of the structure and texture in the realization of the recovery strain resource of the nanostructured Ti-50.26 at %Ni ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2014-09-13

AUTHORS

A. Yu. Kreitcberg, S. D. Prokoshkin, V. Brailovski, A. V. Korotitskiy

ABSTRACT

In this work, we have studied the nanostructure, the crystallographic texture, and the crystal lattice of the martensite of the Ti-50.26 at % Ni alloy subjected to a thermomechanical treatment, which includes cold rolling, warm (at 150°C) rolling, intermediate and post-deformation annealings (at 400°C) in different combinations. To calculate the resource of the recovery strain in the approximation of a polycrystal, we suggested and employed a method based on the sufficiently complete allowance for the orientation distribution function of the initial B2 austenite and on the assumption on the realization of the most favorable orientational variant of martensite in each grain. The calculated values of the resource of the recovery strain have been compared with the experimental data and have been analyzed along with the results of the determination of the recovery stresses and parameters of the loading-unloading diagram. Estimations have been made of the role of the structural and textural factors in the realization of the recovery strain of the nanostructured Ti-50.26 at % Ni alloy. To achieve the maximally high recovery strain, one should focus on obtaining a nanocrystalline structure in combination with a sharp texture, which ensures the maximum transformation deformation in the direction of tension. More... »

PAGES

926-947

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0031918x14090087

DOI

http://dx.doi.org/10.1134/s0031918x14090087

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1045787997


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "\u00c9cole de technologie sup\u00e9riere, 1100 Rue Notre-Dame Ouest, Montreal, Canada", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "MISIS National University of Science and Technology, Leninskii pr. 4, 119049, Moscow, Russia", 
            "\u00c9cole de technologie sup\u00e9riere, 1100 Rue Notre-Dame Ouest, Montreal, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kreitcberg", 
        "givenName": "A. Yu.", 
        "id": "sg:person.012534450355.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012534450355.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "MISIS National University of Science and Technology, Leninskii pr. 4, 119049, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.35043.31", 
          "name": [
            "MISIS National University of Science and Technology, Leninskii pr. 4, 119049, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Prokoshkin", 
        "givenName": "S. D.", 
        "id": "sg:person.015352705675.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015352705675.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "\u00c9cole de technologie sup\u00e9riere, 1100 Rue Notre-Dame Ouest, Montreal, Canada", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "\u00c9cole de technologie sup\u00e9riere, 1100 Rue Notre-Dame Ouest, Montreal, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Brailovski", 
        "givenName": "V.", 
        "id": "sg:person.0756023647.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0756023647.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "MISIS National University of Science and Technology, Leninskii pr. 4, 119049, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.35043.31", 
          "name": [
            "MISIS National University of Science and Technology, Leninskii pr. 4, 119049, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Korotitskiy", 
        "givenName": "A. V.", 
        "id": "sg:person.014506157415.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014506157415.52"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02648858", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021640292", 
          "https://doi.org/10.1007/bf02648858"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11041-005-0049-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047647909", 
          "https://doi.org/10.1007/s11041-005-0049-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13632-013-0114-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049519448", 
          "https://doi.org/10.1007/s13632-013-0114-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0031918x10090127", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032283929", 
          "https://doi.org/10.1134/s0031918x10090127"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0031918x11020244", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008254013", 
          "https://doi.org/10.1134/s0031918x11020244"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-09-13", 
    "datePublishedReg": "2014-09-13", 
    "description": "In this work, we have studied the nanostructure, the crystallographic texture, and the crystal lattice of the martensite of the Ti-50.26 at % Ni alloy subjected to a thermomechanical treatment, which includes cold rolling, warm (at 150\u00b0C) rolling, intermediate and post-deformation annealings (at 400\u00b0C) in different combinations. To calculate the resource of the recovery strain in the approximation of a polycrystal, we suggested and employed a method based on the sufficiently complete allowance for the orientation distribution function of the initial B2 austenite and on the assumption on the realization of the most favorable orientational variant of martensite in each grain. The calculated values of the resource of the recovery strain have been compared with the experimental data and have been analyzed along with the results of the determination of the recovery stresses and parameters of the loading-unloading diagram. Estimations have been made of the role of the structural and textural factors in the realization of the recovery strain of the nanostructured Ti-50.26 at % Ni alloy. To achieve the maximally high recovery strain, one should focus on obtaining a nanocrystalline structure in combination with a sharp texture, which ensures the maximum transformation deformation in the direction of tension.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s0031918x14090087", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1295452", 
        "issn": [
          "0015-3230", 
          "0031-918X"
        ], 
        "name": "Physics of Metals and Metallography", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "9", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "115"
      }
    ], 
    "keywords": [
      "recovery strain", 
      "Ni alloy", 
      "post-deformation annealing", 
      "high recovery strain", 
      "warm rolling", 
      "cold rolling", 
      "thermomechanical treatment", 
      "nanocrystalline structure", 
      "recovery stress", 
      "crystallographic texture", 
      "orientation distribution function", 
      "transformation deformation", 
      "sharp texture", 
      "direction of tension", 
      "alloy", 
      "martensite", 
      "rolling", 
      "experimental data", 
      "annealing", 
      "deformation", 
      "realization", 
      "polycrystals", 
      "different combinations", 
      "texture", 
      "nanostructures", 
      "distribution function", 
      "crystal lattice", 
      "orientational variants", 
      "structure", 
      "grains", 
      "strains", 
      "parameters", 
      "estimation", 
      "strain resources", 
      "stress", 
      "tension", 
      "diagram", 
      "complete allowance", 
      "direction", 
      "combination", 
      "method", 
      "work", 
      "results", 
      "lattice", 
      "approximation", 
      "textural factors", 
      "resources", 
      "values", 
      "allowance", 
      "determination", 
      "assumption", 
      "function", 
      "data", 
      "factors", 
      "B2", 
      "role", 
      "treatment", 
      "variants"
    ], 
    "name": "Role of the structure and texture in the realization of the recovery strain resource of the nanostructured Ti-50.26 at %Ni alloy", 
    "pagination": "926-947", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1045787997"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0031918x14090087"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0031918x14090087", 
      "https://app.dimensions.ai/details/publication/pub.1045787997"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-10T10:11", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_636.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s0031918x14090087"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0031918x14090087'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0031918x14090087'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0031918x14090087'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0031918x14090087'


 

This table displays all metadata directly associated to this object as RDF triples.

161 TRIPLES      22 PREDICATES      88 URIs      75 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0031918x14090087 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N7a0f60d48e35488f9975386488662f26
4 schema:citation sg:pub.10.1007/bf02648858
5 sg:pub.10.1007/s11041-005-0049-8
6 sg:pub.10.1007/s13632-013-0114-4
7 sg:pub.10.1134/s0031918x10090127
8 sg:pub.10.1134/s0031918x11020244
9 schema:datePublished 2014-09-13
10 schema:datePublishedReg 2014-09-13
11 schema:description In this work, we have studied the nanostructure, the crystallographic texture, and the crystal lattice of the martensite of the Ti-50.26 at % Ni alloy subjected to a thermomechanical treatment, which includes cold rolling, warm (at 150°C) rolling, intermediate and post-deformation annealings (at 400°C) in different combinations. To calculate the resource of the recovery strain in the approximation of a polycrystal, we suggested and employed a method based on the sufficiently complete allowance for the orientation distribution function of the initial B2 austenite and on the assumption on the realization of the most favorable orientational variant of martensite in each grain. The calculated values of the resource of the recovery strain have been compared with the experimental data and have been analyzed along with the results of the determination of the recovery stresses and parameters of the loading-unloading diagram. Estimations have been made of the role of the structural and textural factors in the realization of the recovery strain of the nanostructured Ti-50.26 at % Ni alloy. To achieve the maximally high recovery strain, one should focus on obtaining a nanocrystalline structure in combination with a sharp texture, which ensures the maximum transformation deformation in the direction of tension.
12 schema:genre article
13 schema:inLanguage en
14 schema:isAccessibleForFree false
15 schema:isPartOf N2549d30c275e40b787edc912f6ab389d
16 Ndb84c58b7f2d415aa39b232d681e8596
17 sg:journal.1295452
18 schema:keywords B2
19 Ni alloy
20 allowance
21 alloy
22 annealing
23 approximation
24 assumption
25 cold rolling
26 combination
27 complete allowance
28 crystal lattice
29 crystallographic texture
30 data
31 deformation
32 determination
33 diagram
34 different combinations
35 direction
36 direction of tension
37 distribution function
38 estimation
39 experimental data
40 factors
41 function
42 grains
43 high recovery strain
44 lattice
45 martensite
46 method
47 nanocrystalline structure
48 nanostructures
49 orientation distribution function
50 orientational variants
51 parameters
52 polycrystals
53 post-deformation annealing
54 realization
55 recovery strain
56 recovery stress
57 resources
58 results
59 role
60 rolling
61 sharp texture
62 strain resources
63 strains
64 stress
65 structure
66 tension
67 textural factors
68 texture
69 thermomechanical treatment
70 transformation deformation
71 treatment
72 values
73 variants
74 warm rolling
75 work
76 schema:name Role of the structure and texture in the realization of the recovery strain resource of the nanostructured Ti-50.26 at %Ni alloy
77 schema:pagination 926-947
78 schema:productId N11ab3174eeed4c5294c9774774f5e086
79 N512411ab3e0c40f3899a371aa1bd248b
80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045787997
81 https://doi.org/10.1134/s0031918x14090087
82 schema:sdDatePublished 2022-05-10T10:11
83 schema:sdLicense https://scigraph.springernature.com/explorer/license/
84 schema:sdPublisher Ndf13c9748113448c85c9fc7f47ad435e
85 schema:url https://doi.org/10.1134/s0031918x14090087
86 sgo:license sg:explorer/license/
87 sgo:sdDataset articles
88 rdf:type schema:ScholarlyArticle
89 N0dada6f21c9745bfb899fd875190c375 rdf:first sg:person.0756023647.41
90 rdf:rest Ne75e0f585aa64894aae05cc13e99f700
91 N11ab3174eeed4c5294c9774774f5e086 schema:name doi
92 schema:value 10.1134/s0031918x14090087
93 rdf:type schema:PropertyValue
94 N2549d30c275e40b787edc912f6ab389d schema:issueNumber 9
95 rdf:type schema:PublicationIssue
96 N512411ab3e0c40f3899a371aa1bd248b schema:name dimensions_id
97 schema:value pub.1045787997
98 rdf:type schema:PropertyValue
99 N7a0f60d48e35488f9975386488662f26 rdf:first sg:person.012534450355.23
100 rdf:rest Ndf561ad2b10d4ffe8d59e5cb7a4f64a9
101 Ndb84c58b7f2d415aa39b232d681e8596 schema:volumeNumber 115
102 rdf:type schema:PublicationVolume
103 Ndf13c9748113448c85c9fc7f47ad435e schema:name Springer Nature - SN SciGraph project
104 rdf:type schema:Organization
105 Ndf561ad2b10d4ffe8d59e5cb7a4f64a9 rdf:first sg:person.015352705675.83
106 rdf:rest N0dada6f21c9745bfb899fd875190c375
107 Ne75e0f585aa64894aae05cc13e99f700 rdf:first sg:person.014506157415.52
108 rdf:rest rdf:nil
109 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
110 schema:name Engineering
111 rdf:type schema:DefinedTerm
112 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
113 schema:name Materials Engineering
114 rdf:type schema:DefinedTerm
115 sg:journal.1295452 schema:issn 0015-3230
116 0031-918X
117 schema:name Physics of Metals and Metallography
118 schema:publisher Pleiades Publishing
119 rdf:type schema:Periodical
120 sg:person.012534450355.23 schema:affiliation grid-institutes:None
121 schema:familyName Kreitcberg
122 schema:givenName A. Yu.
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012534450355.23
124 rdf:type schema:Person
125 sg:person.014506157415.52 schema:affiliation grid-institutes:grid.35043.31
126 schema:familyName Korotitskiy
127 schema:givenName A. V.
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014506157415.52
129 rdf:type schema:Person
130 sg:person.015352705675.83 schema:affiliation grid-institutes:grid.35043.31
131 schema:familyName Prokoshkin
132 schema:givenName S. D.
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015352705675.83
134 rdf:type schema:Person
135 sg:person.0756023647.41 schema:affiliation grid-institutes:None
136 schema:familyName Brailovski
137 schema:givenName V.
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0756023647.41
139 rdf:type schema:Person
140 sg:pub.10.1007/bf02648858 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021640292
141 https://doi.org/10.1007/bf02648858
142 rdf:type schema:CreativeWork
143 sg:pub.10.1007/s11041-005-0049-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047647909
144 https://doi.org/10.1007/s11041-005-0049-8
145 rdf:type schema:CreativeWork
146 sg:pub.10.1007/s13632-013-0114-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049519448
147 https://doi.org/10.1007/s13632-013-0114-4
148 rdf:type schema:CreativeWork
149 sg:pub.10.1134/s0031918x10090127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032283929
150 https://doi.org/10.1134/s0031918x10090127
151 rdf:type schema:CreativeWork
152 sg:pub.10.1134/s0031918x11020244 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008254013
153 https://doi.org/10.1134/s0031918x11020244
154 rdf:type schema:CreativeWork
155 grid-institutes:None schema:alternateName École de technologie supériere, 1100 Rue Notre-Dame Ouest, Montreal, Canada
156 schema:name MISIS National University of Science and Technology, Leninskii pr. 4, 119049, Moscow, Russia
157 École de technologie supériere, 1100 Rue Notre-Dame Ouest, Montreal, Canada
158 rdf:type schema:Organization
159 grid-institutes:grid.35043.31 schema:alternateName MISIS National University of Science and Technology, Leninskii pr. 4, 119049, Moscow, Russia
160 schema:name MISIS National University of Science and Technology, Leninskii pr. 4, 119049, Moscow, Russia
161 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...