On the theory of mass transfer in liquid metals View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2009-01

AUTHORS

V. G. Postovalov, E. P. Romanov, V. P. Kondrat’ev

ABSTRACT

A method is suggested for the calculation of the coefficients of self-diffusion in liquid metals, which is developed on the basis of the Enskog-Dymond molecular-dynamic theory with the use of a two-parametric hard-sphere model with temperature-dependent diameters. It is shown based on the example of high-temperature metallic melts that this model sufficiently accurately reproduces the temperature dependence of the coefficients of self-diffusion near the melting point in those liquid metals in which the metallic bond is predominant. The connection between the coefficients of viscosity and self-diffusion of liquid metals is considered, to find that it is adequately described by the Stokes-Einstein equation with the boundary condition of free slip. More... »

PAGES

1-11

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0031918x09010013

DOI

http://dx.doi.org/10.1134/s0031918x09010013

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1029891846


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Metal Physics, Ural Division, Russian Academy of Sciences, ul. S. Kovalevskoi 18, 620041, Ekaterinburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.466027.1", 
          "name": [
            "Institute of Metal Physics, Ural Division, Russian Academy of Sciences, ul. S. Kovalevskoi 18, 620041, Ekaterinburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Postovalov", 
        "givenName": "V. G.", 
        "id": "sg:person.011712272601.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011712272601.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Metal Physics, Ural Division, Russian Academy of Sciences, ul. S. Kovalevskoi 18, 620041, Ekaterinburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.466027.1", 
          "name": [
            "Institute of Metal Physics, Ural Division, Russian Academy of Sciences, ul. S. Kovalevskoi 18, 620041, Ekaterinburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Romanov", 
        "givenName": "E. P.", 
        "id": "sg:person.015545075235.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015545075235.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ural Technical Institute of Communication and Information (SibGUTI Branch), ul. Repina 15, 620109, Ekaterinburg, Russia", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Ural Technical Institute of Communication and Information (SibGUTI Branch), ul. Repina 15, 620109, Ekaterinburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kondrat\u2019ev", 
        "givenName": "V. P.", 
        "id": "sg:person.013305233601.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013305233601.05"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1023/a:1020472200649", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015953646", 
          "https://doi.org/10.1023/a:1020472200649"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/b:hite.0000008331.86914.12", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022230496", 
          "https://doi.org/10.1023/b:hite.0000008331.86914.12"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009-01", 
    "datePublishedReg": "2009-01-01", 
    "description": "A method is suggested for the calculation of the coefficients of self-diffusion in liquid metals, which is developed on the basis of the Enskog-Dymond molecular-dynamic theory with the use of a two-parametric hard-sphere model with temperature-dependent diameters. It is shown based on the example of high-temperature metallic melts that this model sufficiently accurately reproduces the temperature dependence of the coefficients of self-diffusion near the melting point in those liquid metals in which the metallic bond is predominant. The connection between the coefficients of viscosity and self-diffusion of liquid metals is considered, to find that it is adequately described by the Stokes-Einstein equation with the boundary condition of free slip.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s0031918x09010013", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1295452", 
        "issn": [
          "0015-3230", 
          "0031-918X"
        ], 
        "name": "Physics of Metals and Metallography", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "107"
      }
    ], 
    "keywords": [
      "liquid metal", 
      "high-temperature metallic melts", 
      "mass transfer", 
      "metallic melts", 
      "free slip", 
      "coefficient of viscosity", 
      "boundary conditions", 
      "metallic bonds", 
      "melting point", 
      "Stokes-Einstein equation", 
      "metals", 
      "molecular-dynamic theory", 
      "hard-sphere model", 
      "coefficient", 
      "temperature dependence", 
      "slip", 
      "viscosity", 
      "melt", 
      "model", 
      "diameter", 
      "bonds", 
      "equations", 
      "transfer", 
      "conditions", 
      "calculations", 
      "dependence", 
      "method", 
      "theory", 
      "example", 
      "point", 
      "use", 
      "connection", 
      "basis", 
      "Enskog-Dymond molecular-dynamic theory", 
      "two-parametric hard-sphere model", 
      "temperature-dependent diameters"
    ], 
    "name": "On the theory of mass transfer in liquid metals", 
    "pagination": "1-11", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1029891846"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0031918x09010013"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0031918x09010013", 
      "https://app.dimensions.ai/details/publication/pub.1029891846"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:21", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_486.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s0031918x09010013"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0031918x09010013'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0031918x09010013'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0031918x09010013'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0031918x09010013'


 

This table displays all metadata directly associated to this object as RDF triples.

119 TRIPLES      22 PREDICATES      64 URIs      54 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0031918x09010013 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Ne631f9fa77064baa88ebf619c0b2b00c
4 schema:citation sg:pub.10.1023/a:1020472200649
5 sg:pub.10.1023/b:hite.0000008331.86914.12
6 schema:datePublished 2009-01
7 schema:datePublishedReg 2009-01-01
8 schema:description A method is suggested for the calculation of the coefficients of self-diffusion in liquid metals, which is developed on the basis of the Enskog-Dymond molecular-dynamic theory with the use of a two-parametric hard-sphere model with temperature-dependent diameters. It is shown based on the example of high-temperature metallic melts that this model sufficiently accurately reproduces the temperature dependence of the coefficients of self-diffusion near the melting point in those liquid metals in which the metallic bond is predominant. The connection between the coefficients of viscosity and self-diffusion of liquid metals is considered, to find that it is adequately described by the Stokes-Einstein equation with the boundary condition of free slip.
9 schema:genre article
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf N5a2400e7b0ca42fc83eec964413b960a
13 N94430525c1be4eaaba3dfb0253b2bcc4
14 sg:journal.1295452
15 schema:keywords Enskog-Dymond molecular-dynamic theory
16 Stokes-Einstein equation
17 basis
18 bonds
19 boundary conditions
20 calculations
21 coefficient
22 coefficient of viscosity
23 conditions
24 connection
25 dependence
26 diameter
27 equations
28 example
29 free slip
30 hard-sphere model
31 high-temperature metallic melts
32 liquid metal
33 mass transfer
34 melt
35 melting point
36 metallic bonds
37 metallic melts
38 metals
39 method
40 model
41 molecular-dynamic theory
42 point
43 slip
44 temperature dependence
45 temperature-dependent diameters
46 theory
47 transfer
48 two-parametric hard-sphere model
49 use
50 viscosity
51 schema:name On the theory of mass transfer in liquid metals
52 schema:pagination 1-11
53 schema:productId N6f69f1b1677b40c7a686dc5265be18c1
54 Nc01b45894fa1496d8d654ab0342ba1c1
55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029891846
56 https://doi.org/10.1134/s0031918x09010013
57 schema:sdDatePublished 2021-12-01T19:21
58 schema:sdLicense https://scigraph.springernature.com/explorer/license/
59 schema:sdPublisher N47c869897cf44966a9943eb1537f54ab
60 schema:url https://doi.org/10.1134/s0031918x09010013
61 sgo:license sg:explorer/license/
62 sgo:sdDataset articles
63 rdf:type schema:ScholarlyArticle
64 N017da95ca7e64a70af91397cca616488 rdf:first sg:person.013305233601.05
65 rdf:rest rdf:nil
66 N47c869897cf44966a9943eb1537f54ab schema:name Springer Nature - SN SciGraph project
67 rdf:type schema:Organization
68 N58fcebaf859c43c4a6b4b20ec718f8ff rdf:first sg:person.015545075235.55
69 rdf:rest N017da95ca7e64a70af91397cca616488
70 N5a2400e7b0ca42fc83eec964413b960a schema:issueNumber 1
71 rdf:type schema:PublicationIssue
72 N6f69f1b1677b40c7a686dc5265be18c1 schema:name doi
73 schema:value 10.1134/s0031918x09010013
74 rdf:type schema:PropertyValue
75 N94430525c1be4eaaba3dfb0253b2bcc4 schema:volumeNumber 107
76 rdf:type schema:PublicationVolume
77 Nc01b45894fa1496d8d654ab0342ba1c1 schema:name dimensions_id
78 schema:value pub.1029891846
79 rdf:type schema:PropertyValue
80 Ne631f9fa77064baa88ebf619c0b2b00c rdf:first sg:person.011712272601.47
81 rdf:rest N58fcebaf859c43c4a6b4b20ec718f8ff
82 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
83 schema:name Engineering
84 rdf:type schema:DefinedTerm
85 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
86 schema:name Materials Engineering
87 rdf:type schema:DefinedTerm
88 sg:journal.1295452 schema:issn 0015-3230
89 0031-918X
90 schema:name Physics of Metals and Metallography
91 schema:publisher Pleiades Publishing
92 rdf:type schema:Periodical
93 sg:person.011712272601.47 schema:affiliation grid-institutes:grid.466027.1
94 schema:familyName Postovalov
95 schema:givenName V. G.
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011712272601.47
97 rdf:type schema:Person
98 sg:person.013305233601.05 schema:affiliation grid-institutes:None
99 schema:familyName Kondrat’ev
100 schema:givenName V. P.
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013305233601.05
102 rdf:type schema:Person
103 sg:person.015545075235.55 schema:affiliation grid-institutes:grid.466027.1
104 schema:familyName Romanov
105 schema:givenName E. P.
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015545075235.55
107 rdf:type schema:Person
108 sg:pub.10.1023/a:1020472200649 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015953646
109 https://doi.org/10.1023/a:1020472200649
110 rdf:type schema:CreativeWork
111 sg:pub.10.1023/b:hite.0000008331.86914.12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022230496
112 https://doi.org/10.1023/b:hite.0000008331.86914.12
113 rdf:type schema:CreativeWork
114 grid-institutes:None schema:alternateName Ural Technical Institute of Communication and Information (SibGUTI Branch), ul. Repina 15, 620109, Ekaterinburg, Russia
115 schema:name Ural Technical Institute of Communication and Information (SibGUTI Branch), ul. Repina 15, 620109, Ekaterinburg, Russia
116 rdf:type schema:Organization
117 grid-institutes:grid.466027.1 schema:alternateName Institute of Metal Physics, Ural Division, Russian Academy of Sciences, ul. S. Kovalevskoi 18, 620041, Ekaterinburg, Russia
118 schema:name Institute of Metal Physics, Ural Division, Russian Academy of Sciences, ul. S. Kovalevskoi 18, 620041, Ekaterinburg, Russia
119 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...