Structural characteristics and the temperature derivative of the electrical resistivity of liquid lanthanides View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2007-03

AUTHORS

V. G. Postovalov, E. P. Romanov, V. P. Kondrat’ev

ABSTRACT

The technique of an analysis is described and structural characteristics of liquid metals are calculated in terms of the model of hard spheres whose diameters asymptotically tend to zero with increasing temperature. The structure factor of a liquid refractory metal near the first maximum has been established to only weakly depend on temperature. A sufficient condition for the validity of the hard-sphere model has been formulated. On the example of many liquid lanthanides, it has been shown that the model satisfying this condition relatively well reproduces not only the structure factor of the melt but also its electrical resistivity in the vicinity of the melting point of the metal. With increasing temperature, the resistivity ρ of trivalent lanthanides increases monotonically, whereas in the case of divalent metals Eu and Yb smooth minima appear in the temperature dependences of ρ. An analysis of the results of calculations suggests that the hard-sphere model used in terms of the electron theory can relatively well describe properties of at least those liquid metals which crystallize into lattices with a packing fraction η ≥ π √3 /8. More... »

PAGES

234-245

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0031918x07030039

DOI

http://dx.doi.org/10.1134/s0031918x07030039

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1032871435


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Metal Physics, Ural Division, Russian Academy of Sciences, ul. S. Kovalevskoi 18, 620041, Ekaterinburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.466027.1", 
          "name": [
            "Institute of Metal Physics, Ural Division, Russian Academy of Sciences, ul. S. Kovalevskoi 18, 620041, Ekaterinburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Postovalov", 
        "givenName": "V. G.", 
        "id": "sg:person.011712272601.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011712272601.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Metal Physics, Ural Division, Russian Academy of Sciences, ul. S. Kovalevskoi 18, 620041, Ekaterinburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.466027.1", 
          "name": [
            "Institute of Metal Physics, Ural Division, Russian Academy of Sciences, ul. S. Kovalevskoi 18, 620041, Ekaterinburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Romanov", 
        "givenName": "E. P.", 
        "id": "sg:person.015545075235.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015545075235.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Mathematics and Mechanics, Ural Division, Russian Academy of Sciences, ul. S. Kovalevskoi 16, 620219, Ekaterinburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.426536.0", 
          "name": [
            "Institute of Mathematics and Mechanics, Ural Division, Russian Academy of Sciences, ul. S. Kovalevskoi 16, 620219, Ekaterinburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kondrat\u2019ev", 
        "givenName": "V. P.", 
        "id": "sg:person.013305233601.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013305233601.05"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1023/b:hite.0000008331.86914.12", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022230496", 
          "https://doi.org/10.1023/b:hite.0000008331.86914.12"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007-03", 
    "datePublishedReg": "2007-03-01", 
    "description": "The technique of an analysis is described and structural characteristics of liquid metals are calculated in terms of the model of hard spheres whose diameters asymptotically tend to zero with increasing temperature. The structure factor of a liquid refractory metal near the first maximum has been established to only weakly depend on temperature. A sufficient condition for the validity of the hard-sphere model has been formulated. On the example of many liquid lanthanides, it has been shown that the model satisfying this condition relatively well reproduces not only the structure factor of the melt but also its electrical resistivity in the vicinity of the melting point of the metal. With increasing temperature, the resistivity \u03c1 of trivalent lanthanides increases monotonically, whereas in the case of divalent metals Eu and Yb smooth minima appear in the temperature dependences of \u03c1. An analysis of the results of calculations suggests that the hard-sphere model used in terms of the electron theory can relatively well describe properties of at least those liquid metals which crystallize into lattices with a packing fraction \u03b7 \u2265 \u03c0 \u221a3 /8.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s0031918x07030039", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1295452", 
        "issn": [
          "0015-3230", 
          "0031-918X"
        ], 
        "name": "Physics of Metals and Metallography", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "103"
      }
    ], 
    "keywords": [
      "structural characteristics", 
      "trivalent lanthanides", 
      "structure factor", 
      "hard-sphere model", 
      "lanthanides", 
      "liquid metal", 
      "metals", 
      "refractory metals", 
      "melting point", 
      "electrical resistivity", 
      "temperature", 
      "temperature dependence", 
      "results of calculations", 
      "hard spheres", 
      "first maximum", 
      "electron theory", 
      "derivatives", 
      "packing fraction \u03b7", 
      "resistivity", 
      "calculations", 
      "properties", 
      "lattice", 
      "sphere", 
      "melt", 
      "conditions", 
      "diameter", 
      "dependence", 
      "fraction \u03b7", 
      "technique", 
      "analysis", 
      "maximum", 
      "EU", 
      "characteristics", 
      "vicinity", 
      "temperature derivative", 
      "terms", 
      "resistivity \u03c1", 
      "minimum", 
      "example", 
      "results", 
      "model", 
      "reproduces", 
      "point", 
      "theory", 
      "factors", 
      "cases", 
      "liquid refractory metals", 
      "validity", 
      "sufficient conditions", 
      "smooth minimum", 
      "liquid lanthanides", 
      "divalent metals Eu", 
      "metals Eu", 
      "Yb smooth minima"
    ], 
    "name": "Structural characteristics and the temperature derivative of the electrical resistivity of liquid lanthanides", 
    "pagination": "234-245", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1032871435"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0031918x07030039"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0031918x07030039", 
      "https://app.dimensions.ai/details/publication/pub.1032871435"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:10", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_445.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s0031918x07030039"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0031918x07030039'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0031918x07030039'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0031918x07030039'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0031918x07030039'


 

This table displays all metadata directly associated to this object as RDF triples.

133 TRIPLES      22 PREDICATES      81 URIs      72 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0031918x07030039 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N6a83689587c04832b9531ab84a4e6f99
4 schema:citation sg:pub.10.1023/b:hite.0000008331.86914.12
5 schema:datePublished 2007-03
6 schema:datePublishedReg 2007-03-01
7 schema:description The technique of an analysis is described and structural characteristics of liquid metals are calculated in terms of the model of hard spheres whose diameters asymptotically tend to zero with increasing temperature. The structure factor of a liquid refractory metal near the first maximum has been established to only weakly depend on temperature. A sufficient condition for the validity of the hard-sphere model has been formulated. On the example of many liquid lanthanides, it has been shown that the model satisfying this condition relatively well reproduces not only the structure factor of the melt but also its electrical resistivity in the vicinity of the melting point of the metal. With increasing temperature, the resistivity ρ of trivalent lanthanides increases monotonically, whereas in the case of divalent metals Eu and Yb smooth minima appear in the temperature dependences of ρ. An analysis of the results of calculations suggests that the hard-sphere model used in terms of the electron theory can relatively well describe properties of at least those liquid metals which crystallize into lattices with a packing fraction η ≥ π √3 /8.
8 schema:genre article
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N7b9fe4b6ae3742c3a374950ba2d0c4fc
12 Nd41254d9ecfa44e68452c25486fa8e98
13 sg:journal.1295452
14 schema:keywords EU
15 Yb smooth minima
16 analysis
17 calculations
18 cases
19 characteristics
20 conditions
21 dependence
22 derivatives
23 diameter
24 divalent metals Eu
25 electrical resistivity
26 electron theory
27 example
28 factors
29 first maximum
30 fraction η
31 hard spheres
32 hard-sphere model
33 lanthanides
34 lattice
35 liquid lanthanides
36 liquid metal
37 liquid refractory metals
38 maximum
39 melt
40 melting point
41 metals
42 metals Eu
43 minimum
44 model
45 packing fraction η
46 point
47 properties
48 refractory metals
49 reproduces
50 resistivity
51 resistivity ρ
52 results
53 results of calculations
54 smooth minimum
55 sphere
56 structural characteristics
57 structure factor
58 sufficient conditions
59 technique
60 temperature
61 temperature dependence
62 temperature derivative
63 terms
64 theory
65 trivalent lanthanides
66 validity
67 vicinity
68 schema:name Structural characteristics and the temperature derivative of the electrical resistivity of liquid lanthanides
69 schema:pagination 234-245
70 schema:productId N687c9c0bd1e7422d8ea631b5a234f92e
71 Nb72b1c321c9d46208590b613a0b2be29
72 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032871435
73 https://doi.org/10.1134/s0031918x07030039
74 schema:sdDatePublished 2021-11-01T18:10
75 schema:sdLicense https://scigraph.springernature.com/explorer/license/
76 schema:sdPublisher N7042b044af8249cf82a11483f1a77647
77 schema:url https://doi.org/10.1134/s0031918x07030039
78 sgo:license sg:explorer/license/
79 sgo:sdDataset articles
80 rdf:type schema:ScholarlyArticle
81 N687c9c0bd1e7422d8ea631b5a234f92e schema:name doi
82 schema:value 10.1134/s0031918x07030039
83 rdf:type schema:PropertyValue
84 N6a83689587c04832b9531ab84a4e6f99 rdf:first sg:person.011712272601.47
85 rdf:rest Nab1dcb854a25424b8f378c6f80a0c4cc
86 N7042b044af8249cf82a11483f1a77647 schema:name Springer Nature - SN SciGraph project
87 rdf:type schema:Organization
88 N7b9fe4b6ae3742c3a374950ba2d0c4fc schema:volumeNumber 103
89 rdf:type schema:PublicationVolume
90 Nab1dcb854a25424b8f378c6f80a0c4cc rdf:first sg:person.015545075235.55
91 rdf:rest Nb9694b6817c64f218896e14a3752f9a2
92 Nb72b1c321c9d46208590b613a0b2be29 schema:name dimensions_id
93 schema:value pub.1032871435
94 rdf:type schema:PropertyValue
95 Nb9694b6817c64f218896e14a3752f9a2 rdf:first sg:person.013305233601.05
96 rdf:rest rdf:nil
97 Nd41254d9ecfa44e68452c25486fa8e98 schema:issueNumber 3
98 rdf:type schema:PublicationIssue
99 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
100 schema:name Engineering
101 rdf:type schema:DefinedTerm
102 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
103 schema:name Materials Engineering
104 rdf:type schema:DefinedTerm
105 sg:journal.1295452 schema:issn 0015-3230
106 0031-918X
107 schema:name Physics of Metals and Metallography
108 schema:publisher Pleiades Publishing
109 rdf:type schema:Periodical
110 sg:person.011712272601.47 schema:affiliation grid-institutes:grid.466027.1
111 schema:familyName Postovalov
112 schema:givenName V. G.
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011712272601.47
114 rdf:type schema:Person
115 sg:person.013305233601.05 schema:affiliation grid-institutes:grid.426536.0
116 schema:familyName Kondrat’ev
117 schema:givenName V. P.
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013305233601.05
119 rdf:type schema:Person
120 sg:person.015545075235.55 schema:affiliation grid-institutes:grid.466027.1
121 schema:familyName Romanov
122 schema:givenName E. P.
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015545075235.55
124 rdf:type schema:Person
125 sg:pub.10.1023/b:hite.0000008331.86914.12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022230496
126 https://doi.org/10.1023/b:hite.0000008331.86914.12
127 rdf:type schema:CreativeWork
128 grid-institutes:grid.426536.0 schema:alternateName Institute of Mathematics and Mechanics, Ural Division, Russian Academy of Sciences, ul. S. Kovalevskoi 16, 620219, Ekaterinburg, Russia
129 schema:name Institute of Mathematics and Mechanics, Ural Division, Russian Academy of Sciences, ul. S. Kovalevskoi 16, 620219, Ekaterinburg, Russia
130 rdf:type schema:Organization
131 grid-institutes:grid.466027.1 schema:alternateName Institute of Metal Physics, Ural Division, Russian Academy of Sciences, ul. S. Kovalevskoi 18, 620041, Ekaterinburg, Russia
132 schema:name Institute of Metal Physics, Ural Division, Russian Academy of Sciences, ul. S. Kovalevskoi 18, 620041, Ekaterinburg, Russia
133 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...