Intra-Cavity Holographic Gratings and Lasers with a Controllable Spectrum Based on Them View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2021-12

AUTHORS

A. P. Pogoda, V. M. Petrov, I. S. Khakhalin, E. E. Popov, A. S. Boreisho

ABSTRACT

The comparison of the influence of intra-cavity spectral selectors: static Bragg gratings and dynamic gain gratings, has been presented. It has been shown that their effect on the spectral properties of the laser radiation with a loop resonator is similar. The performed statistical study of the mode composition of the groups of the generation pulses at the Q-factor modulation mode allows us to conclude that the rewriting of the grating by the subsequent group pulse does not prevent radiation at the same frequency. This opens up the possibility of frequency stabilization of the radiation. The presence of an intra-cavity Bragg grating causes an increase in the probability of preserving the radiation frequency in neighboring pulses of the radiation group. It has been shown that there is a narrowing of the pulse generation spectrum in the group, despite the fact that the spectral width of the grating exceeds the spectral width of the generation pulse. The combined operation of static and dynamic intra-cavity gratings makes it possible to create a line of lasers with high pulse energy, radiation quality close to the diffraction limit, high peak power, and a narrow radiation spectrum. More... »

PAGES

1321-1326

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0030400x21040226

DOI

http://dx.doi.org/10.1134/s0030400x21040226

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1146485036


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Ustinov Baltic State Technical University \u201cVOENMEH\u201d, 190005, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.445815.9", 
          "name": [
            "Ustinov Baltic State Technical University \u201cVOENMEH\u201d, 190005, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pogoda", 
        "givenName": "A. P.", 
        "id": "sg:person.016303616554.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016303616554.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "ITMO University, 197101, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.35915.3b", 
          "name": [
            "ITMO University, 197101, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Petrov", 
        "givenName": "V. M.", 
        "id": "sg:person.011664107313.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011664107313.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ustinov Baltic State Technical University \u201cVOENMEH\u201d, 190005, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.445815.9", 
          "name": [
            "Ustinov Baltic State Technical University \u201cVOENMEH\u201d, 190005, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Khakhalin", 
        "givenName": "I. S.", 
        "id": "sg:person.014227722275.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014227722275.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "ITMO University, 197101, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.35915.3b", 
          "name": [
            "Ustinov Baltic State Technical University \u201cVOENMEH\u201d, 190005, St. Petersburg, Russia", 
            "ITMO University, 197101, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Popov", 
        "givenName": "E. E.", 
        "id": "sg:person.014401176437.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014401176437.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ustinov Baltic State Technical University \u201cVOENMEH\u201d, 190005, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.445815.9", 
          "name": [
            "Ustinov Baltic State Technical University \u201cVOENMEH\u201d, 190005, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Boreisho", 
        "givenName": "A. S.", 
        "id": "sg:person.013172004426.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013172004426.06"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2021-12", 
    "datePublishedReg": "2021-12-01", 
    "description": "The comparison of the influence of intra-cavity spectral selectors: static Bragg gratings and dynamic gain gratings, has been presented. It has been shown that their effect on the spectral properties of the laser radiation with a loop resonator is similar. The performed statistical study of the mode composition of the groups of the generation pulses at the Q-factor modulation mode allows us to conclude that the rewriting of the grating by the subsequent group pulse does not prevent radiation at the same frequency. This opens up the possibility of frequency stabilization of the radiation. The presence of an intra-cavity Bragg grating causes an increase in the probability of preserving the radiation frequency in neighboring pulses of the radiation group. It has been shown that there is a narrowing of the pulse generation spectrum in the group, despite the fact that the spectral width of the grating exceeds the spectral width of the generation pulse. The combined operation of static and dynamic intra-cavity gratings makes it possible to create a line of lasers with high pulse energy, radiation quality close to the diffraction limit, high peak power, and a narrow radiation spectrum.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s0030400x21040226", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1294762", 
        "issn": [
          "0030-400X", 
          "1562-6911"
        ], 
        "name": "Optics and Spectroscopy", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "12", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "129"
      }
    ], 
    "keywords": [
      "Bragg grating", 
      "spectral width", 
      "high pulse energy", 
      "high peak power", 
      "spectral selector", 
      "laser radiation", 
      "pulse energy", 
      "gain grating", 
      "radiation frequency", 
      "radiation spectrum", 
      "frequency stabilization", 
      "diffraction limit", 
      "generation pulse", 
      "generation spectra", 
      "holographic gratings", 
      "mode composition", 
      "grating", 
      "peak power", 
      "controllable spectrum", 
      "radiation quality", 
      "pulses", 
      "laser", 
      "radiation", 
      "spectral properties", 
      "spectra", 
      "statistical study", 
      "modulation mode", 
      "same frequency", 
      "width", 
      "resonator", 
      "loop resonator", 
      "energy", 
      "frequency", 
      "mode", 
      "limit", 
      "properties", 
      "narrowing", 
      "power", 
      "generation", 
      "possibility", 
      "selector", 
      "lines", 
      "composition", 
      "combined operation", 
      "probability", 
      "operation", 
      "stabilization", 
      "effect", 
      "comparison", 
      "presence", 
      "influence", 
      "fact", 
      "increase", 
      "study", 
      "quality", 
      "radiation group", 
      "group", 
      "rewriting"
    ], 
    "name": "Intra-Cavity Holographic Gratings and Lasers with a Controllable Spectrum Based on Them", 
    "pagination": "1321-1326", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1146485036"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0030400x21040226"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0030400x21040226", 
      "https://app.dimensions.ai/details/publication/pub.1146485036"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T16:05", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_884.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s0030400x21040226"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0030400x21040226'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0030400x21040226'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0030400x21040226'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0030400x21040226'


 

This table displays all metadata directly associated to this object as RDF triples.

147 TRIPLES      20 PREDICATES      83 URIs      75 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0030400x21040226 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author N30d31d1d42534e21be457c0d5f143bc9
4 schema:datePublished 2021-12
5 schema:datePublishedReg 2021-12-01
6 schema:description The comparison of the influence of intra-cavity spectral selectors: static Bragg gratings and dynamic gain gratings, has been presented. It has been shown that their effect on the spectral properties of the laser radiation with a loop resonator is similar. The performed statistical study of the mode composition of the groups of the generation pulses at the Q-factor modulation mode allows us to conclude that the rewriting of the grating by the subsequent group pulse does not prevent radiation at the same frequency. This opens up the possibility of frequency stabilization of the radiation. The presence of an intra-cavity Bragg grating causes an increase in the probability of preserving the radiation frequency in neighboring pulses of the radiation group. It has been shown that there is a narrowing of the pulse generation spectrum in the group, despite the fact that the spectral width of the grating exceeds the spectral width of the generation pulse. The combined operation of static and dynamic intra-cavity gratings makes it possible to create a line of lasers with high pulse energy, radiation quality close to the diffraction limit, high peak power, and a narrow radiation spectrum.
7 schema:genre article
8 schema:isAccessibleForFree false
9 schema:isPartOf N5daab01492194a7da863b18a440c1250
10 N9187dbda78ca48b69a6e0dda37210b5f
11 sg:journal.1294762
12 schema:keywords Bragg grating
13 combined operation
14 comparison
15 composition
16 controllable spectrum
17 diffraction limit
18 effect
19 energy
20 fact
21 frequency
22 frequency stabilization
23 gain grating
24 generation
25 generation pulse
26 generation spectra
27 grating
28 group
29 high peak power
30 high pulse energy
31 holographic gratings
32 increase
33 influence
34 laser
35 laser radiation
36 limit
37 lines
38 loop resonator
39 mode
40 mode composition
41 modulation mode
42 narrowing
43 operation
44 peak power
45 possibility
46 power
47 presence
48 probability
49 properties
50 pulse energy
51 pulses
52 quality
53 radiation
54 radiation frequency
55 radiation group
56 radiation quality
57 radiation spectrum
58 resonator
59 rewriting
60 same frequency
61 selector
62 spectra
63 spectral properties
64 spectral selector
65 spectral width
66 stabilization
67 statistical study
68 study
69 width
70 schema:name Intra-Cavity Holographic Gratings and Lasers with a Controllable Spectrum Based on Them
71 schema:pagination 1321-1326
72 schema:productId N0085fdbef68846678063e5745ae0bf6d
73 Nf0a55f8fbe974e169c710f44d6edf33c
74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1146485036
75 https://doi.org/10.1134/s0030400x21040226
76 schema:sdDatePublished 2022-09-02T16:05
77 schema:sdLicense https://scigraph.springernature.com/explorer/license/
78 schema:sdPublisher N7f38eae841d34a43b9065356fea7f91b
79 schema:url https://doi.org/10.1134/s0030400x21040226
80 sgo:license sg:explorer/license/
81 sgo:sdDataset articles
82 rdf:type schema:ScholarlyArticle
83 N0085fdbef68846678063e5745ae0bf6d schema:name dimensions_id
84 schema:value pub.1146485036
85 rdf:type schema:PropertyValue
86 N30d31d1d42534e21be457c0d5f143bc9 rdf:first sg:person.016303616554.66
87 rdf:rest Nf3a143dfb5cb45e88f427aa0de2bea70
88 N32fb823cdeac4a1bb65eb16c6b488aba rdf:first sg:person.014401176437.38
89 rdf:rest Nfb6b1f93437d4dc5af50652d8d2fc936
90 N5daab01492194a7da863b18a440c1250 schema:issueNumber 12
91 rdf:type schema:PublicationIssue
92 N7f38eae841d34a43b9065356fea7f91b schema:name Springer Nature - SN SciGraph project
93 rdf:type schema:Organization
94 N9187dbda78ca48b69a6e0dda37210b5f schema:volumeNumber 129
95 rdf:type schema:PublicationVolume
96 Na3a6450c7810472aa1b7407f35ded0d5 rdf:first sg:person.014227722275.38
97 rdf:rest N32fb823cdeac4a1bb65eb16c6b488aba
98 Nf0a55f8fbe974e169c710f44d6edf33c schema:name doi
99 schema:value 10.1134/s0030400x21040226
100 rdf:type schema:PropertyValue
101 Nf3a143dfb5cb45e88f427aa0de2bea70 rdf:first sg:person.011664107313.78
102 rdf:rest Na3a6450c7810472aa1b7407f35ded0d5
103 Nfb6b1f93437d4dc5af50652d8d2fc936 rdf:first sg:person.013172004426.06
104 rdf:rest rdf:nil
105 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
106 schema:name Physical Sciences
107 rdf:type schema:DefinedTerm
108 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
109 schema:name Other Physical Sciences
110 rdf:type schema:DefinedTerm
111 sg:journal.1294762 schema:issn 0030-400X
112 1562-6911
113 schema:name Optics and Spectroscopy
114 schema:publisher Pleiades Publishing
115 rdf:type schema:Periodical
116 sg:person.011664107313.78 schema:affiliation grid-institutes:grid.35915.3b
117 schema:familyName Petrov
118 schema:givenName V. M.
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011664107313.78
120 rdf:type schema:Person
121 sg:person.013172004426.06 schema:affiliation grid-institutes:grid.445815.9
122 schema:familyName Boreisho
123 schema:givenName A. S.
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013172004426.06
125 rdf:type schema:Person
126 sg:person.014227722275.38 schema:affiliation grid-institutes:grid.445815.9
127 schema:familyName Khakhalin
128 schema:givenName I. S.
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014227722275.38
130 rdf:type schema:Person
131 sg:person.014401176437.38 schema:affiliation grid-institutes:grid.35915.3b
132 schema:familyName Popov
133 schema:givenName E. E.
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014401176437.38
135 rdf:type schema:Person
136 sg:person.016303616554.66 schema:affiliation grid-institutes:grid.445815.9
137 schema:familyName Pogoda
138 schema:givenName A. P.
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016303616554.66
140 rdf:type schema:Person
141 grid-institutes:grid.35915.3b schema:alternateName ITMO University, 197101, St. Petersburg, Russia
142 schema:name ITMO University, 197101, St. Petersburg, Russia
143 Ustinov Baltic State Technical University “VOENMEH”, 190005, St. Petersburg, Russia
144 rdf:type schema:Organization
145 grid-institutes:grid.445815.9 schema:alternateName Ustinov Baltic State Technical University “VOENMEH”, 190005, St. Petersburg, Russia
146 schema:name Ustinov Baltic State Technical University “VOENMEH”, 190005, St. Petersburg, Russia
147 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...