Light Scattering by Small Particles: an Ellipsoidal Model That Uses a Quasistatic Approach View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-12

AUTHORS

V. G. Farafonov, V. I. Ustimov, M. S. Prokopjeva, A. R. Tulegenov, V. B. Il’in

ABSTRACT

To describe light scattering by small nonspherical particles, we have constructed an ellipsoidal model using a quasistatic approximation. The semiaxes of the model ellipsoid are determined based on the requirement that the volumes of initial and model particles are equal, as well as the ratios of their maximum longitudinal and transverse dimensions. This ensures the closeness of the optical properties of initial and model particles. This approach has been applied to parallelepipeds, cylinders, and cones. The range of applicability has been determined by comparing the results of numerical calculations with approximate and rigorous methods. As a rigorous method, we have chosen the discrete dipole approximation (DDA), which is applicable to arbitrary nonspherical particles. We have shown that, for parallelepipeds and cylinders, the applicability range of the model is rather wide with respect to different parameters of the problem. At the same time, the model is less suitable for cones, and it should be completely avoided for oblate particles in the case when a plane TM wave is incident on particles perpendicularly to their symmetry axis. In general, the proposed approximation yields more accurate results and has a large range of applicability upon a decrease in the relative refractive index and an increase in the semiaxis ratio of the “effective” ellipsoid, aef /bef, i.e., for strongly prolate and strongly oblate transparent particles. More... »

PAGES

971-976

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0030400x1812007x

DOI

http://dx.doi.org/10.1134/s0030400x1812007x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112437629


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Saint Petersburg State University", 
          "id": "https://www.grid.ac/institutes/grid.15447.33", 
          "name": [
            "St. Petersburg State University of Aerospace Instrumentation, 190000, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Farafonov", 
        "givenName": "V. G.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Saint Petersburg State University", 
          "id": "https://www.grid.ac/institutes/grid.15447.33", 
          "name": [
            "St. Petersburg State University of Aerospace Instrumentation, 190000, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ustimov", 
        "givenName": "V. I.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Saint Petersburg State University", 
          "id": "https://www.grid.ac/institutes/grid.15447.33", 
          "name": [
            "St. Petersburg State University, 199034, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Prokopjeva", 
        "givenName": "M. S.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Saint Petersburg State University", 
          "id": "https://www.grid.ac/institutes/grid.15447.33", 
          "name": [
            "St. Petersburg State University of Aerospace Instrumentation, 190000, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tulegenov", 
        "givenName": "A. R.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Pulkovo Observatory", 
          "id": "https://www.grid.ac/institutes/grid.437494.9", 
          "name": [
            "St. Petersburg State University of Aerospace Instrumentation, 190000, St. Petersburg, Russia", 
            "St. Petersburg State University, 199034, St. Petersburg, Russia", 
            "Pulkovo Astronomical Observatory, Russian Academy of Sciences, 196140, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Il\u2019in", 
        "givenName": "V. B.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.jqsrt.2011.01.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003114859"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/1.1473598", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014299166", 
          "https://doi.org/10.1134/1.1473598"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mop.20106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034739539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00658095", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044368996", 
          "https://doi.org/10.1007/bf00658095"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00658095", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044368996", 
          "https://doi.org/10.1007/bf00658095"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/1.626749", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045036115", 
          "https://doi.org/10.1134/1.626749"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0030400x17030079", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084222925", 
          "https://doi.org/10.1134/s0030400x17030079"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0030400x18020042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101887169", 
          "https://doi.org/10.1134/s0030400x18020042"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0030400x18020042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101887169", 
          "https://doi.org/10.1134/s0030400x18020042"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "To describe light scattering by small nonspherical particles, we have constructed an ellipsoidal model using a quasistatic approximation. The semiaxes of the model ellipsoid are determined based on the requirement that the volumes of initial and model particles are equal, as well as the ratios of their maximum longitudinal and transverse dimensions. This ensures the closeness of the optical properties of initial and model particles. This approach has been applied to parallelepipeds, cylinders, and cones. The range of applicability has been determined by comparing the results of numerical calculations with approximate and rigorous methods. As a rigorous method, we have chosen the discrete dipole approximation (DDA), which is applicable to arbitrary nonspherical particles. We have shown that, for parallelepipeds and cylinders, the applicability range of the model is rather wide with respect to different parameters of the problem. At the same time, the model is less suitable for cones, and it should be completely avoided for oblate particles in the case when a plane TM wave is incident on particles perpendicularly to their symmetry axis. In general, the proposed approximation yields more accurate results and has a large range of applicability upon a decrease in the relative refractive index and an increase in the semiaxis ratio of the \u201ceffective\u201d ellipsoid, aef /bef, i.e., for strongly prolate and strongly oblate transparent particles.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s0030400x1812007x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6746539", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6745779", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1294762", 
        "issn": [
          "0030-400X", 
          "1562-6911"
        ], 
        "name": "Optics and Spectroscopy", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "125"
      }
    ], 
    "name": "Light Scattering by Small Particles: an Ellipsoidal Model That Uses a Quasistatic Approach", 
    "pagination": "971-976", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "7fe4ad026edcfd0df361ae441ae230189ddb9b9eeb687db566ac8316975bfb32"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0030400x1812007x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112437629"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0030400x1812007x", 
      "https://app.dimensions.ai/details/publication/pub.1112437629"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:16", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000348_0000000348/records_54298_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1134%2FS0030400X1812007X"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0030400x1812007x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0030400x1812007x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0030400x1812007x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0030400x1812007x'


 

This table displays all metadata directly associated to this object as RDF triples.

120 TRIPLES      21 PREDICATES      34 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0030400x1812007x schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author N9510985721a74645a0639d856837bc1b
4 schema:citation sg:pub.10.1007/bf00658095
5 sg:pub.10.1134/1.1473598
6 sg:pub.10.1134/1.626749
7 sg:pub.10.1134/s0030400x17030079
8 sg:pub.10.1134/s0030400x18020042
9 https://doi.org/10.1002/mop.20106
10 https://doi.org/10.1016/j.jqsrt.2011.01.031
11 schema:datePublished 2018-12
12 schema:datePublishedReg 2018-12-01
13 schema:description To describe light scattering by small nonspherical particles, we have constructed an ellipsoidal model using a quasistatic approximation. The semiaxes of the model ellipsoid are determined based on the requirement that the volumes of initial and model particles are equal, as well as the ratios of their maximum longitudinal and transverse dimensions. This ensures the closeness of the optical properties of initial and model particles. This approach has been applied to parallelepipeds, cylinders, and cones. The range of applicability has been determined by comparing the results of numerical calculations with approximate and rigorous methods. As a rigorous method, we have chosen the discrete dipole approximation (DDA), which is applicable to arbitrary nonspherical particles. We have shown that, for parallelepipeds and cylinders, the applicability range of the model is rather wide with respect to different parameters of the problem. At the same time, the model is less suitable for cones, and it should be completely avoided for oblate particles in the case when a plane TM wave is incident on particles perpendicularly to their symmetry axis. In general, the proposed approximation yields more accurate results and has a large range of applicability upon a decrease in the relative refractive index and an increase in the semiaxis ratio of the “effective” ellipsoid, aef /bef, i.e., for strongly prolate and strongly oblate transparent particles.
14 schema:genre research_article
15 schema:inLanguage en
16 schema:isAccessibleForFree false
17 schema:isPartOf N01fc3f4d272a4d488effcac4978c4a42
18 N47aca6b831324f9fb332f0a50dc41029
19 sg:journal.1294762
20 schema:name Light Scattering by Small Particles: an Ellipsoidal Model That Uses a Quasistatic Approach
21 schema:pagination 971-976
22 schema:productId N248dfa54a2a24d0b85b5147411ad277f
23 N282ed342f0a547c1a5f23df98f259445
24 N5f362036ab7b4e43b2277ce8b6854e9d
25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112437629
26 https://doi.org/10.1134/s0030400x1812007x
27 schema:sdDatePublished 2019-04-11T10:16
28 schema:sdLicense https://scigraph.springernature.com/explorer/license/
29 schema:sdPublisher N796fe7912b434e428b541b2b49745606
30 schema:url https://link.springer.com/10.1134%2FS0030400X1812007X
31 sgo:license sg:explorer/license/
32 sgo:sdDataset articles
33 rdf:type schema:ScholarlyArticle
34 N01fc3f4d272a4d488effcac4978c4a42 schema:volumeNumber 125
35 rdf:type schema:PublicationVolume
36 N084fd2ad6ce545009216b45776aef022 schema:affiliation https://www.grid.ac/institutes/grid.15447.33
37 schema:familyName Prokopjeva
38 schema:givenName M. S.
39 rdf:type schema:Person
40 N19be7b34cc324e0e9a8069f68bcaab2c schema:affiliation https://www.grid.ac/institutes/grid.15447.33
41 schema:familyName Tulegenov
42 schema:givenName A. R.
43 rdf:type schema:Person
44 N248dfa54a2a24d0b85b5147411ad277f schema:name readcube_id
45 schema:value 7fe4ad026edcfd0df361ae441ae230189ddb9b9eeb687db566ac8316975bfb32
46 rdf:type schema:PropertyValue
47 N282ed342f0a547c1a5f23df98f259445 schema:name dimensions_id
48 schema:value pub.1112437629
49 rdf:type schema:PropertyValue
50 N2d5fa9df2947406d9fc12c9d3f53fbbb schema:affiliation https://www.grid.ac/institutes/grid.437494.9
51 schema:familyName Il’in
52 schema:givenName V. B.
53 rdf:type schema:Person
54 N2f21638efa544d1f84a35ded999ad89b rdf:first N19be7b34cc324e0e9a8069f68bcaab2c
55 rdf:rest N3ed689fcb0824b0e85562788e53d15c1
56 N3ed689fcb0824b0e85562788e53d15c1 rdf:first N2d5fa9df2947406d9fc12c9d3f53fbbb
57 rdf:rest rdf:nil
58 N47aca6b831324f9fb332f0a50dc41029 schema:issueNumber 6
59 rdf:type schema:PublicationIssue
60 N5f362036ab7b4e43b2277ce8b6854e9d schema:name doi
61 schema:value 10.1134/s0030400x1812007x
62 rdf:type schema:PropertyValue
63 N796fe7912b434e428b541b2b49745606 schema:name Springer Nature - SN SciGraph project
64 rdf:type schema:Organization
65 N80b2de38f1df443f832eb90fd0ec769a rdf:first Ne58fe5680f8e475b9dc2dad898c6e372
66 rdf:rest N91613162e21d4cad83cfae0bcb83d4db
67 N91613162e21d4cad83cfae0bcb83d4db rdf:first N084fd2ad6ce545009216b45776aef022
68 rdf:rest N2f21638efa544d1f84a35ded999ad89b
69 N9510985721a74645a0639d856837bc1b rdf:first Nab7abbc8a03b4ca5a93906cedfc685b5
70 rdf:rest N80b2de38f1df443f832eb90fd0ec769a
71 Nab7abbc8a03b4ca5a93906cedfc685b5 schema:affiliation https://www.grid.ac/institutes/grid.15447.33
72 schema:familyName Farafonov
73 schema:givenName V. G.
74 rdf:type schema:Person
75 Ne58fe5680f8e475b9dc2dad898c6e372 schema:affiliation https://www.grid.ac/institutes/grid.15447.33
76 schema:familyName Ustimov
77 schema:givenName V. I.
78 rdf:type schema:Person
79 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
80 schema:name Mathematical Sciences
81 rdf:type schema:DefinedTerm
82 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
83 schema:name Numerical and Computational Mathematics
84 rdf:type schema:DefinedTerm
85 sg:grant.6745779 http://pending.schema.org/fundedItem sg:pub.10.1134/s0030400x1812007x
86 rdf:type schema:MonetaryGrant
87 sg:grant.6746539 http://pending.schema.org/fundedItem sg:pub.10.1134/s0030400x1812007x
88 rdf:type schema:MonetaryGrant
89 sg:journal.1294762 schema:issn 0030-400X
90 1562-6911
91 schema:name Optics and Spectroscopy
92 rdf:type schema:Periodical
93 sg:pub.10.1007/bf00658095 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044368996
94 https://doi.org/10.1007/bf00658095
95 rdf:type schema:CreativeWork
96 sg:pub.10.1134/1.1473598 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014299166
97 https://doi.org/10.1134/1.1473598
98 rdf:type schema:CreativeWork
99 sg:pub.10.1134/1.626749 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045036115
100 https://doi.org/10.1134/1.626749
101 rdf:type schema:CreativeWork
102 sg:pub.10.1134/s0030400x17030079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084222925
103 https://doi.org/10.1134/s0030400x17030079
104 rdf:type schema:CreativeWork
105 sg:pub.10.1134/s0030400x18020042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101887169
106 https://doi.org/10.1134/s0030400x18020042
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1002/mop.20106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034739539
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1016/j.jqsrt.2011.01.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003114859
111 rdf:type schema:CreativeWork
112 https://www.grid.ac/institutes/grid.15447.33 schema:alternateName Saint Petersburg State University
113 schema:name St. Petersburg State University of Aerospace Instrumentation, 190000, St. Petersburg, Russia
114 St. Petersburg State University, 199034, St. Petersburg, Russia
115 rdf:type schema:Organization
116 https://www.grid.ac/institutes/grid.437494.9 schema:alternateName Pulkovo Observatory
117 schema:name Pulkovo Astronomical Observatory, Russian Academy of Sciences, 196140, St. Petersburg, Russia
118 St. Petersburg State University of Aerospace Instrumentation, 190000, St. Petersburg, Russia
119 St. Petersburg State University, 199034, St. Petersburg, Russia
120 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...