Light Scattering by Small Multilayer Nonconfocal Spheroids Using Suitable Spheroidal Basis Sets View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-12

AUTHORS

V. G. Farafonov, V. I. Ustimov, V. B. Il’in

ABSTRACT

We construct a Rayleigh approximation for multilayer particles the layer boundaries of which are nonconfocal spheroids. The geometry of the problem is taken into account to the maximum extent by representing the field potentials inside nonconfocal shells as expansions in terms of spheroidal harmonics in different coordinate systems in which the surfaces of the layers are coordinate. To sew two expansions inside each layer, we use relations between spheroidal harmonics of the Laplace equation in systems with different focal lengths that we obtained. The extended boundary conditions method (ЕВСМ) and the separation of variables method (SVM) prove to be equivalent, because they yield the same results. The polarizability of the particle and, therefore, the characteristics of the scattered radiation are written in terms of infinite-dimensional matrices, the elements of which are determined either explicitly or in the form of finite sums. In particular cases of confocal spheroids, this solution is completely consistent with the known results. More... »

PAGES

957-965

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0030400x18120068

DOI

http://dx.doi.org/10.1134/s0030400x18120068

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112440688


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Saint Petersburg State University", 
          "id": "https://www.grid.ac/institutes/grid.15447.33", 
          "name": [
            "St. Petersburg State University of Aerospace Instrumentation, 190000, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Farafonov", 
        "givenName": "V. G.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Saint Petersburg State University", 
          "id": "https://www.grid.ac/institutes/grid.15447.33", 
          "name": [
            "St. Petersburg State University, 199034, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ustimov", 
        "givenName": "V. I.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Pulkovo Observatory", 
          "id": "https://www.grid.ac/institutes/grid.437494.9", 
          "name": [
            "St. Petersburg State University of Aerospace Instrumentation, 190000, St. Petersburg, Russia", 
            "St. Petersburg State University, 199034, St. Petersburg, Russia", 
            "Pulkovo Astronomical Observatory, Russian Academy of Sciences, 196140, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Il\u2019in", 
        "givenName": "V. B.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10958-013-1511-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006751019", 
          "https://doi.org/10.1007/s10958-013-1511-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0030400x13030090", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009752509", 
          "https://doi.org/10.1134/s0030400x13030090"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00205-007-0087-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010018511", 
          "https://doi.org/10.1007/s00205-007-0087-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00205-007-0087-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010018511", 
          "https://doi.org/10.1007/s00205-007-0087-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/1.1463128", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019393545", 
          "https://doi.org/10.1134/1.1463128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10958-016-2784-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020523883", 
          "https://doi.org/10.1007/s10958-016-2784-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/1.626814", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039179619", 
          "https://doi.org/10.1134/1.626814"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0030400x16030073", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043143438", 
          "https://doi.org/10.1134/s0030400x16030073"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00340-006-2298-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043704459", 
          "https://doi.org/10.1007/s00340-006-2298-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00340-006-2298-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043704459", 
          "https://doi.org/10.1007/s00340-006-2298-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00658095", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044368996", 
          "https://doi.org/10.1007/bf00658095"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00658095", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044368996", 
          "https://doi.org/10.1007/bf00658095"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0305-4470/33/7/308", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059077204"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ao.35.005412", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065111360"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ao.51.001586", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065127734"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "We construct a Rayleigh approximation for multilayer particles the layer boundaries of which are nonconfocal spheroids. The geometry of the problem is taken into account to the maximum extent by representing the field potentials inside nonconfocal shells as expansions in terms of spheroidal harmonics in different coordinate systems in which the surfaces of the layers are coordinate. To sew two expansions inside each layer, we use relations between spheroidal harmonics of the Laplace equation in systems with different focal lengths that we obtained. The extended boundary conditions method (\u0415\u0412\u0421\u041c) and the separation of variables method (SVM) prove to be equivalent, because they yield the same results. The polarizability of the particle and, therefore, the characteristics of the scattered radiation are written in terms of infinite-dimensional matrices, the elements of which are determined either explicitly or in the form of finite sums. In particular cases of confocal spheroids, this solution is completely consistent with the known results.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s0030400x18120068", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6746539", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6745779", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1294762", 
        "issn": [
          "0030-400X", 
          "1562-6911"
        ], 
        "name": "Optics and Spectroscopy", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "125"
      }
    ], 
    "name": "Light Scattering by Small Multilayer Nonconfocal Spheroids Using Suitable Spheroidal Basis Sets", 
    "pagination": "957-965", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d3b2512dc27373c25089df1cc931ba6cf03086239d8cda7617b780db72052885"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0030400x18120068"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112440688"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0030400x18120068", 
      "https://app.dimensions.ai/details/publication/pub.1112440688"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:17", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000348_0000000348/records_54310_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1134%2FS0030400X18120068"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0030400x18120068'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0030400x18120068'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0030400x18120068'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0030400x18120068'


 

This table displays all metadata directly associated to this object as RDF triples.

127 TRIPLES      21 PREDICATES      39 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0030400x18120068 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nf4bb2ed92ea94d28bfb13d7f388c3e5f
4 schema:citation sg:pub.10.1007/bf00658095
5 sg:pub.10.1007/s00205-007-0087-z
6 sg:pub.10.1007/s00340-006-2298-7
7 sg:pub.10.1007/s10958-013-1511-6
8 sg:pub.10.1007/s10958-016-2784-3
9 sg:pub.10.1134/1.1463128
10 sg:pub.10.1134/1.626814
11 sg:pub.10.1134/s0030400x13030090
12 sg:pub.10.1134/s0030400x16030073
13 https://doi.org/10.1088/0305-4470/33/7/308
14 https://doi.org/10.1364/ao.35.005412
15 https://doi.org/10.1364/ao.51.001586
16 schema:datePublished 2018-12
17 schema:datePublishedReg 2018-12-01
18 schema:description We construct a Rayleigh approximation for multilayer particles the layer boundaries of which are nonconfocal spheroids. The geometry of the problem is taken into account to the maximum extent by representing the field potentials inside nonconfocal shells as expansions in terms of spheroidal harmonics in different coordinate systems in which the surfaces of the layers are coordinate. To sew two expansions inside each layer, we use relations between spheroidal harmonics of the Laplace equation in systems with different focal lengths that we obtained. The extended boundary conditions method (ЕВСМ) and the separation of variables method (SVM) prove to be equivalent, because they yield the same results. The polarizability of the particle and, therefore, the characteristics of the scattered radiation are written in terms of infinite-dimensional matrices, the elements of which are determined either explicitly or in the form of finite sums. In particular cases of confocal spheroids, this solution is completely consistent with the known results.
19 schema:genre research_article
20 schema:inLanguage en
21 schema:isAccessibleForFree false
22 schema:isPartOf N30f17a07f8a14a9a8a2ce477ef1f554d
23 Ne67ccce573cd41c991e526be34a8dac7
24 sg:journal.1294762
25 schema:name Light Scattering by Small Multilayer Nonconfocal Spheroids Using Suitable Spheroidal Basis Sets
26 schema:pagination 957-965
27 schema:productId N166453c44f134edfbf47f4f0b1fb0834
28 N2c5a62ce1b4840e48f29dd2165a6858f
29 N5f257fdf1973479395727c8edfb4ab8e
30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112440688
31 https://doi.org/10.1134/s0030400x18120068
32 schema:sdDatePublished 2019-04-11T10:17
33 schema:sdLicense https://scigraph.springernature.com/explorer/license/
34 schema:sdPublisher N917176edc11043e9b808a64c7f3fa43d
35 schema:url https://link.springer.com/10.1134%2FS0030400X18120068
36 sgo:license sg:explorer/license/
37 sgo:sdDataset articles
38 rdf:type schema:ScholarlyArticle
39 N166453c44f134edfbf47f4f0b1fb0834 schema:name readcube_id
40 schema:value d3b2512dc27373c25089df1cc931ba6cf03086239d8cda7617b780db72052885
41 rdf:type schema:PropertyValue
42 N1eeeec38dc774a93b032f932514ed7b2 schema:affiliation https://www.grid.ac/institutes/grid.15447.33
43 schema:familyName Farafonov
44 schema:givenName V. G.
45 rdf:type schema:Person
46 N240292e83813411b82b922ff2f62908e rdf:first Nc7ba2b2ad49841c3bf175ce56ee6e5f7
47 rdf:rest rdf:nil
48 N2c5a62ce1b4840e48f29dd2165a6858f schema:name dimensions_id
49 schema:value pub.1112440688
50 rdf:type schema:PropertyValue
51 N30f17a07f8a14a9a8a2ce477ef1f554d schema:issueNumber 6
52 rdf:type schema:PublicationIssue
53 N5f257fdf1973479395727c8edfb4ab8e schema:name doi
54 schema:value 10.1134/s0030400x18120068
55 rdf:type schema:PropertyValue
56 N917176edc11043e9b808a64c7f3fa43d schema:name Springer Nature - SN SciGraph project
57 rdf:type schema:Organization
58 Na39a805e4c974753b69432d80ad2a756 rdf:first Nf0ba51f7c54940b5ae9bf20821301378
59 rdf:rest N240292e83813411b82b922ff2f62908e
60 Nc7ba2b2ad49841c3bf175ce56ee6e5f7 schema:affiliation https://www.grid.ac/institutes/grid.437494.9
61 schema:familyName Il’in
62 schema:givenName V. B.
63 rdf:type schema:Person
64 Ne67ccce573cd41c991e526be34a8dac7 schema:volumeNumber 125
65 rdf:type schema:PublicationVolume
66 Nf0ba51f7c54940b5ae9bf20821301378 schema:affiliation https://www.grid.ac/institutes/grid.15447.33
67 schema:familyName Ustimov
68 schema:givenName V. I.
69 rdf:type schema:Person
70 Nf4bb2ed92ea94d28bfb13d7f388c3e5f rdf:first N1eeeec38dc774a93b032f932514ed7b2
71 rdf:rest Na39a805e4c974753b69432d80ad2a756
72 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
73 schema:name Mathematical Sciences
74 rdf:type schema:DefinedTerm
75 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
76 schema:name Pure Mathematics
77 rdf:type schema:DefinedTerm
78 sg:grant.6745779 http://pending.schema.org/fundedItem sg:pub.10.1134/s0030400x18120068
79 rdf:type schema:MonetaryGrant
80 sg:grant.6746539 http://pending.schema.org/fundedItem sg:pub.10.1134/s0030400x18120068
81 rdf:type schema:MonetaryGrant
82 sg:journal.1294762 schema:issn 0030-400X
83 1562-6911
84 schema:name Optics and Spectroscopy
85 rdf:type schema:Periodical
86 sg:pub.10.1007/bf00658095 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044368996
87 https://doi.org/10.1007/bf00658095
88 rdf:type schema:CreativeWork
89 sg:pub.10.1007/s00205-007-0087-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1010018511
90 https://doi.org/10.1007/s00205-007-0087-z
91 rdf:type schema:CreativeWork
92 sg:pub.10.1007/s00340-006-2298-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043704459
93 https://doi.org/10.1007/s00340-006-2298-7
94 rdf:type schema:CreativeWork
95 sg:pub.10.1007/s10958-013-1511-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006751019
96 https://doi.org/10.1007/s10958-013-1511-6
97 rdf:type schema:CreativeWork
98 sg:pub.10.1007/s10958-016-2784-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020523883
99 https://doi.org/10.1007/s10958-016-2784-3
100 rdf:type schema:CreativeWork
101 sg:pub.10.1134/1.1463128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019393545
102 https://doi.org/10.1134/1.1463128
103 rdf:type schema:CreativeWork
104 sg:pub.10.1134/1.626814 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039179619
105 https://doi.org/10.1134/1.626814
106 rdf:type schema:CreativeWork
107 sg:pub.10.1134/s0030400x13030090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009752509
108 https://doi.org/10.1134/s0030400x13030090
109 rdf:type schema:CreativeWork
110 sg:pub.10.1134/s0030400x16030073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043143438
111 https://doi.org/10.1134/s0030400x16030073
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1088/0305-4470/33/7/308 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059077204
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1364/ao.35.005412 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065111360
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1364/ao.51.001586 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065127734
118 rdf:type schema:CreativeWork
119 https://www.grid.ac/institutes/grid.15447.33 schema:alternateName Saint Petersburg State University
120 schema:name St. Petersburg State University of Aerospace Instrumentation, 190000, St. Petersburg, Russia
121 St. Petersburg State University, 199034, St. Petersburg, Russia
122 rdf:type schema:Organization
123 https://www.grid.ac/institutes/grid.437494.9 schema:alternateName Pulkovo Observatory
124 schema:name Pulkovo Astronomical Observatory, Russian Academy of Sciences, 196140, St. Petersburg, Russia
125 St. Petersburg State University of Aerospace Instrumentation, 190000, St. Petersburg, Russia
126 St. Petersburg State University, 199034, St. Petersburg, Russia
127 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...