Quantum key distribution with multi letter alphabets View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2010-03

AUTHORS

D. Sych, G. Leuchs

ABSTRACT

We present a new protocol for continuous variable quantum key distribution (CV QKD). The novelty of the protocol is a multi letter alphabet represented by coherent states of light with a fixed amplitude and variable phase. Information is encoded in the phase of a coherent state which can be chosen from a regular discrete set consisting, however, of an arbitrary number of letters. We evaluate the security of the protocol against the beam splitting attack. As a result we show the proposed protocol has advantages over the standard two letter coherent state QKD protocol, especially in the case when losses in the communication channel are low. More... »

PAGES

326-330

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0030400x10030021

DOI

http://dx.doi.org/10.1134/s0030400x10030021

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1035879660


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for the Science of Light", 
          "id": "https://www.grid.ac/institutes/grid.419562.d", 
          "name": [
            "Max Planck Institute for the Science of Light, 91058, Erlangen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sych", 
        "givenName": "D.", 
        "id": "sg:person.01105370423.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01105370423.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for the Science of Light", 
          "id": "https://www.grid.ac/institutes/grid.419562.d", 
          "name": [
            "Max Planck Institute for the Science of Light, 91058, Erlangen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Leuchs", 
        "givenName": "G.", 
        "id": "sg:person.01336050020.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01336050020.20"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physreva.73.052316", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000943309"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.73.052316", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000943309"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.89.167901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018068619"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.89.167901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018068619"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.74.145", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030127668"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.74.145", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030127668"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.81.3018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045337567"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.81.3018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045337567"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.59.4238", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052085805"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.59.4238", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052085805"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00340-004-1574-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052418972", 
          "https://doi.org/10.1007/s00340-004-1574-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1070/qe2005v035n01abeh002886", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058186914"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.70.052331", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060500687"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.70.052331", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060500687"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.68.3121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060804661"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.68.3121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060804661"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-03", 
    "datePublishedReg": "2010-03-01", 
    "description": "We present a new protocol for continuous variable quantum key distribution (CV QKD). The novelty of the protocol is a multi letter alphabet represented by coherent states of light with a fixed amplitude and variable phase. Information is encoded in the phase of a coherent state which can be chosen from a regular discrete set consisting, however, of an arbitrary number of letters. We evaluate the security of the protocol against the beam splitting attack. As a result we show the proposed protocol has advantages over the standard two letter coherent state QKD protocol, especially in the case when losses in the communication channel are low.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s0030400x10030021", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1294762", 
        "issn": [
          "0030-400X", 
          "1562-6911"
        ], 
        "name": "Optics and Spectroscopy", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "108"
      }
    ], 
    "name": "Quantum key distribution with multi letter alphabets", 
    "pagination": "326-330", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "aaeb5e48c3c426796a1946fa8a80bcb7e8911eaa8cfaf5dda9189534b59e1508"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0030400x10030021"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1035879660"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0030400x10030021", 
      "https://app.dimensions.ai/details/publication/pub.1035879660"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:20", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000348_0000000348/records_54334_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1134/S0030400X10030021"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0030400x10030021'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0030400x10030021'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0030400x10030021'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0030400x10030021'


 

This table displays all metadata directly associated to this object as RDF triples.

96 TRIPLES      21 PREDICATES      36 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0030400x10030021 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author Nc273ffd7db31474c84733acd6fcfd103
4 schema:citation sg:pub.10.1007/s00340-004-1574-7
5 https://doi.org/10.1070/qe2005v035n01abeh002886
6 https://doi.org/10.1103/physreva.59.4238
7 https://doi.org/10.1103/physreva.70.052331
8 https://doi.org/10.1103/physreva.73.052316
9 https://doi.org/10.1103/physrevlett.68.3121
10 https://doi.org/10.1103/physrevlett.81.3018
11 https://doi.org/10.1103/physrevlett.89.167901
12 https://doi.org/10.1103/revmodphys.74.145
13 schema:datePublished 2010-03
14 schema:datePublishedReg 2010-03-01
15 schema:description We present a new protocol for continuous variable quantum key distribution (CV QKD). The novelty of the protocol is a multi letter alphabet represented by coherent states of light with a fixed amplitude and variable phase. Information is encoded in the phase of a coherent state which can be chosen from a regular discrete set consisting, however, of an arbitrary number of letters. We evaluate the security of the protocol against the beam splitting attack. As a result we show the proposed protocol has advantages over the standard two letter coherent state QKD protocol, especially in the case when losses in the communication channel are low.
16 schema:genre research_article
17 schema:inLanguage en
18 schema:isAccessibleForFree false
19 schema:isPartOf N149d92f3a7c74e0d8a61d172e7911d46
20 Na00ec3beb6c740d598f30bf879ec227d
21 sg:journal.1294762
22 schema:name Quantum key distribution with multi letter alphabets
23 schema:pagination 326-330
24 schema:productId N5f86cf69737947379d55067f2439debc
25 N741d5de8b2e8411092b7dbfe53a9457e
26 N8882285239434416bc946270be03e56d
27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035879660
28 https://doi.org/10.1134/s0030400x10030021
29 schema:sdDatePublished 2019-04-11T10:20
30 schema:sdLicense https://scigraph.springernature.com/explorer/license/
31 schema:sdPublisher Ncc7b973bf6ba4c54ae9d4c14628c75e6
32 schema:url http://link.springer.com/10.1134/S0030400X10030021
33 sgo:license sg:explorer/license/
34 sgo:sdDataset articles
35 rdf:type schema:ScholarlyArticle
36 N149d92f3a7c74e0d8a61d172e7911d46 schema:volumeNumber 108
37 rdf:type schema:PublicationVolume
38 N5f86cf69737947379d55067f2439debc schema:name readcube_id
39 schema:value aaeb5e48c3c426796a1946fa8a80bcb7e8911eaa8cfaf5dda9189534b59e1508
40 rdf:type schema:PropertyValue
41 N741d5de8b2e8411092b7dbfe53a9457e schema:name doi
42 schema:value 10.1134/s0030400x10030021
43 rdf:type schema:PropertyValue
44 N8882285239434416bc946270be03e56d schema:name dimensions_id
45 schema:value pub.1035879660
46 rdf:type schema:PropertyValue
47 N8e5032d0dabe4c438043117b752a66bb rdf:first sg:person.01336050020.20
48 rdf:rest rdf:nil
49 Na00ec3beb6c740d598f30bf879ec227d schema:issueNumber 3
50 rdf:type schema:PublicationIssue
51 Nc273ffd7db31474c84733acd6fcfd103 rdf:first sg:person.01105370423.50
52 rdf:rest N8e5032d0dabe4c438043117b752a66bb
53 Ncc7b973bf6ba4c54ae9d4c14628c75e6 schema:name Springer Nature - SN SciGraph project
54 rdf:type schema:Organization
55 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
56 schema:name Physical Sciences
57 rdf:type schema:DefinedTerm
58 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
59 schema:name Other Physical Sciences
60 rdf:type schema:DefinedTerm
61 sg:journal.1294762 schema:issn 0030-400X
62 1562-6911
63 schema:name Optics and Spectroscopy
64 rdf:type schema:Periodical
65 sg:person.01105370423.50 schema:affiliation https://www.grid.ac/institutes/grid.419562.d
66 schema:familyName Sych
67 schema:givenName D.
68 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01105370423.50
69 rdf:type schema:Person
70 sg:person.01336050020.20 schema:affiliation https://www.grid.ac/institutes/grid.419562.d
71 schema:familyName Leuchs
72 schema:givenName G.
73 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01336050020.20
74 rdf:type schema:Person
75 sg:pub.10.1007/s00340-004-1574-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052418972
76 https://doi.org/10.1007/s00340-004-1574-7
77 rdf:type schema:CreativeWork
78 https://doi.org/10.1070/qe2005v035n01abeh002886 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058186914
79 rdf:type schema:CreativeWork
80 https://doi.org/10.1103/physreva.59.4238 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052085805
81 rdf:type schema:CreativeWork
82 https://doi.org/10.1103/physreva.70.052331 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060500687
83 rdf:type schema:CreativeWork
84 https://doi.org/10.1103/physreva.73.052316 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000943309
85 rdf:type schema:CreativeWork
86 https://doi.org/10.1103/physrevlett.68.3121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060804661
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1103/physrevlett.81.3018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045337567
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1103/physrevlett.89.167901 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018068619
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1103/revmodphys.74.145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030127668
93 rdf:type schema:CreativeWork
94 https://www.grid.ac/institutes/grid.419562.d schema:alternateName Max Planck Institute for the Science of Light
95 schema:name Max Planck Institute for the Science of Light, 91058, Erlangen, Germany
96 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...