Potential of pulsed excilamps for remote sounding of polluted atmosphere View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2009-11

AUTHORS

G. M. Krekov, M. M. Krekova, A. A. Lisenko, A. Ya. Sukhanov, M. V. Erofeev, M. I. Lomaev, V. F. Tarasenko

ABSTRACT

The results are discussed of a closed numerical experiment on lidar sounding of the concentration of small gas impurities in the tropospheric layer of the atmosphere based on a new LIDAR-DOAS hybrid technology that uses a XeCl* excilamp as a source of pulsed broadband radiation. Quantitative estimates con-firm the promise of the approach, which expands the potential of the classical scheme of differential optical absorption spectroscopy (DOAS) with respect to the remote monitoring and localization of hazardous anthropogenic emissions of toxic gases. Combining the Monte Carlo method with the genetic algorithm for solving the inverse problem of reconstructing the profiles of sought gas constituents of the troposphere makes it possible to strictly quantitatively predict the efficiency of new promising lidar systems for monitoring the environment. More... »

PAGES

696

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0030400x09110046

DOI

http://dx.doi.org/10.1134/s0030400x09110046

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1045082065


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "V.E. Zuev Institute of Atmospheric Optics", 
          "id": "https://www.grid.ac/institutes/grid.435125.4", 
          "name": [
            "Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences, 634021, Tomsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Krekov", 
        "givenName": "G. M.", 
        "id": "sg:person.016522120224.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016522120224.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "V.E. Zuev Institute of Atmospheric Optics", 
          "id": "https://www.grid.ac/institutes/grid.435125.4", 
          "name": [
            "Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences, 634021, Tomsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Krekova", 
        "givenName": "M. M.", 
        "id": "sg:person.01055511524.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01055511524.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "V.E. Zuev Institute of Atmospheric Optics", 
          "id": "https://www.grid.ac/institutes/grid.435125.4", 
          "name": [
            "Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences, 634021, Tomsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lisenko", 
        "givenName": "A. A.", 
        "id": "sg:person.016060123075.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016060123075.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "V.E. Zuev Institute of Atmospheric Optics", 
          "id": "https://www.grid.ac/institutes/grid.435125.4", 
          "name": [
            "Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences, 634021, Tomsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sukhanov", 
        "givenName": "A. Ya.", 
        "id": "sg:person.015142627107.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015142627107.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of High Current Electronics", 
          "id": "https://www.grid.ac/institutes/grid.465280.d", 
          "name": [
            "Institute of High Current Electronics, Siberian Branch, Russian Academy of Sciences, 634055, Tomsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Erofeev", 
        "givenName": "M. V.", 
        "id": "sg:person.011621550151.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011621550151.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of High Current Electronics", 
          "id": "https://www.grid.ac/institutes/grid.465280.d", 
          "name": [
            "Institute of High Current Electronics, Siberian Branch, Russian Academy of Sciences, 634055, Tomsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lomaev", 
        "givenName": "M. I.", 
        "id": "sg:person.015570240325.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015570240325.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of High Current Electronics", 
          "id": "https://www.grid.ac/institutes/grid.465280.d", 
          "name": [
            "Institute of High Current Electronics, Siberian Branch, Russian Academy of Sciences, 634055, Tomsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tarasenko", 
        "givenName": "V. F.", 
        "id": "sg:person.010404324635.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010404324635.66"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00466-003-0526-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001064893", 
          "https://doi.org/10.1007/s00466-003-0526-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00340-006-2416-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003181612", 
          "https://doi.org/10.1007/s00340-006-2416-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00340-006-2416-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003181612", 
          "https://doi.org/10.1007/s00340-006-2416-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/jc084ic08p05047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010788626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jqsrt.2004.10.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011908603"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0022-3727/39/16/013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015162837"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/jc085ic12p07453", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022408285"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/jc084ic10p06329", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046808156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/97jd02969", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051323816"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1051/epjap:2002090", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056958926"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1085020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062448159"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.189.4202.547", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062511828"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jjap.47.2155", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063080814"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ao.34.006223", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065110373"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ao.40.003476", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065116541"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3367/ufnr.0173.200302d.0201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071219963"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009-11", 
    "datePublishedReg": "2009-11-01", 
    "description": "The results are discussed of a closed numerical experiment on lidar sounding of the concentration of small gas impurities in the tropospheric layer of the atmosphere based on a new LIDAR-DOAS hybrid technology that uses a XeCl* excilamp as a source of pulsed broadband radiation. Quantitative estimates con-firm the promise of the approach, which expands the potential of the classical scheme of differential optical absorption spectroscopy (DOAS) with respect to the remote monitoring and localization of hazardous anthropogenic emissions of toxic gases. Combining the Monte Carlo method with the genetic algorithm for solving the inverse problem of reconstructing the profiles of sought gas constituents of the troposphere makes it possible to strictly quantitatively predict the efficiency of new promising lidar systems for monitoring the environment.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s0030400x09110046", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1294762", 
        "issn": [
          "0030-400X", 
          "1562-6911"
        ], 
        "name": "Optics and Spectroscopy", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "107"
      }
    ], 
    "name": "Potential of pulsed excilamps for remote sounding of polluted atmosphere", 
    "pagination": "696", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d6bd7795c34af5bc1130927a72e8ee5b587e69c309af9415caf2409aa6077432"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0030400x09110046"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1045082065"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0030400x09110046", 
      "https://app.dimensions.ai/details/publication/pub.1045082065"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:41", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000346_0000000346/records_99841_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1134/S0030400X09110046"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0030400x09110046'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0030400x09110046'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0030400x09110046'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0030400x09110046'


 

This table displays all metadata directly associated to this object as RDF triples.

153 TRIPLES      21 PREDICATES      42 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0030400x09110046 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author N3c8fd00c281d491b8abcb0e1fba3794a
4 schema:citation sg:pub.10.1007/s00340-006-2416-6
5 sg:pub.10.1007/s00466-003-0526-0
6 https://doi.org/10.1016/j.jqsrt.2004.10.008
7 https://doi.org/10.1029/97jd02969
8 https://doi.org/10.1029/jc084ic08p05047
9 https://doi.org/10.1029/jc084ic10p06329
10 https://doi.org/10.1029/jc085ic12p07453
11 https://doi.org/10.1051/epjap:2002090
12 https://doi.org/10.1088/0022-3727/39/16/013
13 https://doi.org/10.1126/science.1085020
14 https://doi.org/10.1126/science.189.4202.547
15 https://doi.org/10.1143/jjap.47.2155
16 https://doi.org/10.1364/ao.34.006223
17 https://doi.org/10.1364/ao.40.003476
18 https://doi.org/10.3367/ufnr.0173.200302d.0201
19 schema:datePublished 2009-11
20 schema:datePublishedReg 2009-11-01
21 schema:description The results are discussed of a closed numerical experiment on lidar sounding of the concentration of small gas impurities in the tropospheric layer of the atmosphere based on a new LIDAR-DOAS hybrid technology that uses a XeCl* excilamp as a source of pulsed broadband radiation. Quantitative estimates con-firm the promise of the approach, which expands the potential of the classical scheme of differential optical absorption spectroscopy (DOAS) with respect to the remote monitoring and localization of hazardous anthropogenic emissions of toxic gases. Combining the Monte Carlo method with the genetic algorithm for solving the inverse problem of reconstructing the profiles of sought gas constituents of the troposphere makes it possible to strictly quantitatively predict the efficiency of new promising lidar systems for monitoring the environment.
22 schema:genre research_article
23 schema:inLanguage en
24 schema:isAccessibleForFree false
25 schema:isPartOf N676a3f42b6194b7887fc13c64b140085
26 N7bf6ba27611b4cfbb94e017a6b5561a0
27 sg:journal.1294762
28 schema:name Potential of pulsed excilamps for remote sounding of polluted atmosphere
29 schema:pagination 696
30 schema:productId N1efbfb6c61084eaa8f0bc022f9750afd
31 N5587811268aa4e3d9f335b56cbdea1af
32 N769c6a796c9f4aadb90e57d0b05b2718
33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045082065
34 https://doi.org/10.1134/s0030400x09110046
35 schema:sdDatePublished 2019-04-11T09:41
36 schema:sdLicense https://scigraph.springernature.com/explorer/license/
37 schema:sdPublisher N2376a897afd5458091572c80f1327a8f
38 schema:url http://link.springer.com/10.1134/S0030400X09110046
39 sgo:license sg:explorer/license/
40 sgo:sdDataset articles
41 rdf:type schema:ScholarlyArticle
42 N1efbfb6c61084eaa8f0bc022f9750afd schema:name readcube_id
43 schema:value d6bd7795c34af5bc1130927a72e8ee5b587e69c309af9415caf2409aa6077432
44 rdf:type schema:PropertyValue
45 N2376a897afd5458091572c80f1327a8f schema:name Springer Nature - SN SciGraph project
46 rdf:type schema:Organization
47 N3c8fd00c281d491b8abcb0e1fba3794a rdf:first sg:person.016522120224.55
48 rdf:rest Nd70d3e00b9734ffe845ffcb508dc49ce
49 N5587811268aa4e3d9f335b56cbdea1af schema:name doi
50 schema:value 10.1134/s0030400x09110046
51 rdf:type schema:PropertyValue
52 N676a3f42b6194b7887fc13c64b140085 schema:issueNumber 5
53 rdf:type schema:PublicationIssue
54 N72ff369a69754a0fb4a450a57c686ded rdf:first sg:person.015570240325.49
55 rdf:rest Na17a98d7cccb48698ed54d09eb90f387
56 N769c6a796c9f4aadb90e57d0b05b2718 schema:name dimensions_id
57 schema:value pub.1045082065
58 rdf:type schema:PropertyValue
59 N77d795da538e49e3aceb156e45957da5 rdf:first sg:person.016060123075.00
60 rdf:rest Ndc16f096967a4bb3a5bc3ad57f176b0a
61 N7bf6ba27611b4cfbb94e017a6b5561a0 schema:volumeNumber 107
62 rdf:type schema:PublicationVolume
63 Na17a98d7cccb48698ed54d09eb90f387 rdf:first sg:person.010404324635.66
64 rdf:rest rdf:nil
65 Nae7e6ae1b6f8405e8726b3df9c8839a9 rdf:first sg:person.011621550151.39
66 rdf:rest N72ff369a69754a0fb4a450a57c686ded
67 Nd70d3e00b9734ffe845ffcb508dc49ce rdf:first sg:person.01055511524.26
68 rdf:rest N77d795da538e49e3aceb156e45957da5
69 Ndc16f096967a4bb3a5bc3ad57f176b0a rdf:first sg:person.015142627107.59
70 rdf:rest Nae7e6ae1b6f8405e8726b3df9c8839a9
71 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
72 schema:name Physical Sciences
73 rdf:type schema:DefinedTerm
74 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
75 schema:name Other Physical Sciences
76 rdf:type schema:DefinedTerm
77 sg:journal.1294762 schema:issn 0030-400X
78 1562-6911
79 schema:name Optics and Spectroscopy
80 rdf:type schema:Periodical
81 sg:person.010404324635.66 schema:affiliation https://www.grid.ac/institutes/grid.465280.d
82 schema:familyName Tarasenko
83 schema:givenName V. F.
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010404324635.66
85 rdf:type schema:Person
86 sg:person.01055511524.26 schema:affiliation https://www.grid.ac/institutes/grid.435125.4
87 schema:familyName Krekova
88 schema:givenName M. M.
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01055511524.26
90 rdf:type schema:Person
91 sg:person.011621550151.39 schema:affiliation https://www.grid.ac/institutes/grid.465280.d
92 schema:familyName Erofeev
93 schema:givenName M. V.
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011621550151.39
95 rdf:type schema:Person
96 sg:person.015142627107.59 schema:affiliation https://www.grid.ac/institutes/grid.435125.4
97 schema:familyName Sukhanov
98 schema:givenName A. Ya.
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015142627107.59
100 rdf:type schema:Person
101 sg:person.015570240325.49 schema:affiliation https://www.grid.ac/institutes/grid.465280.d
102 schema:familyName Lomaev
103 schema:givenName M. I.
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015570240325.49
105 rdf:type schema:Person
106 sg:person.016060123075.00 schema:affiliation https://www.grid.ac/institutes/grid.435125.4
107 schema:familyName Lisenko
108 schema:givenName A. A.
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016060123075.00
110 rdf:type schema:Person
111 sg:person.016522120224.55 schema:affiliation https://www.grid.ac/institutes/grid.435125.4
112 schema:familyName Krekov
113 schema:givenName G. M.
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016522120224.55
115 rdf:type schema:Person
116 sg:pub.10.1007/s00340-006-2416-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003181612
117 https://doi.org/10.1007/s00340-006-2416-6
118 rdf:type schema:CreativeWork
119 sg:pub.10.1007/s00466-003-0526-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001064893
120 https://doi.org/10.1007/s00466-003-0526-0
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/j.jqsrt.2004.10.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011908603
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1029/97jd02969 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051323816
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1029/jc084ic08p05047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010788626
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1029/jc084ic10p06329 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046808156
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1029/jc085ic12p07453 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022408285
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1051/epjap:2002090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056958926
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1088/0022-3727/39/16/013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015162837
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1126/science.1085020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062448159
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1126/science.189.4202.547 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062511828
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1143/jjap.47.2155 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063080814
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1364/ao.34.006223 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065110373
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1364/ao.40.003476 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065116541
145 rdf:type schema:CreativeWork
146 https://doi.org/10.3367/ufnr.0173.200302d.0201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071219963
147 rdf:type schema:CreativeWork
148 https://www.grid.ac/institutes/grid.435125.4 schema:alternateName V.E. Zuev Institute of Atmospheric Optics
149 schema:name Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences, 634021, Tomsk, Russia
150 rdf:type schema:Organization
151 https://www.grid.ac/institutes/grid.465280.d schema:alternateName Institute of High Current Electronics
152 schema:name Institute of High Current Electronics, Siberian Branch, Russian Academy of Sciences, 634055, Tomsk, Russia
153 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...