Calculation of Energy for RNA/RNA and DNA/RNA Duplex Formation by Molecular Dynamics Simulation View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-11

AUTHORS

V. M. Golyshev, D. V. Pyshnyi, A. A. Lomzov

ABSTRACT

The development of approaches for predictive calculation of hybridization properties of various nucleic acid (NA) derivatives is the basis for the rational design of the NA-based constructs. Modern advances in computer modeling methods provide the feasibility of these calculations. We have analyzed the possibility of calculating the energy of DNA/RNA and RNA/RNA duplex formation using representative sets of complexes (65 and 75 complexes, respectively). We used the classical molecular dynamics (MD) method, the MMPBSA or MMGBSA approaches to calculate the enthalpy (ΔH°) component, and the quasi-harmonic approximation (Q-Harm) or the normal mode analysis (NMA) methods to calculate the entropy (ΔS°) contribution to the Gibbs energy (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta G_{{37}}^{^\circ }$$\end{document} ) of the NA complex formation. We have found that the MMGBSA method in the analysis of the MD trajectory of only the NA duplex and the empirical linear approximation allow calculation of the enthalpy of formation of the DNA, RNA, and hybrid duplexes of various lengths and GC content with an accuracy of 8.6%. Within each type of complex, the combination of rather efficient MMGBSA and Q-Harm approaches being applied to the trajectory of only the bimolecular complex makes it possible to calculate the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta G_{{37}}^{^\circ }$$\end{document} of the duplex formation with an error value of 10%. The high accuracy of predictive calculation for different types of natural complexes (DNA/RNA, DNA/RNA, and RNA/RNA) indicates the possibility of extending the considered approach to analogs and derivatives of nucleic acids, which gives a fundamental opportunity in the future to perform rational design of new types of NA-targeted sequence-specific compounds. More... »

PAGES

927-940

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s002689332105006x

DOI

http://dx.doi.org/10.1134/s002689332105006x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1143980398


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Novosibirsk State University, 630090, Novosibirsk, Russia", 
          "id": "http://www.grid.ac/institutes/grid.4605.7", 
          "name": [
            "Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090, Novosibirsk, Russia", 
            "Novosibirsk State University, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Golyshev", 
        "givenName": "V. M.", 
        "id": "sg:person.01075604075.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01075604075.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Novosibirsk State University, 630090, Novosibirsk, Russia", 
          "id": "http://www.grid.ac/institutes/grid.4605.7", 
          "name": [
            "Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090, Novosibirsk, Russia", 
            "Novosibirsk State University, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pyshnyi", 
        "givenName": "D. V.", 
        "id": "sg:person.0607040762.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0607040762.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Novosibirsk State University, 630090, Novosibirsk, Russia", 
          "id": "http://www.grid.ac/institutes/grid.4605.7", 
          "name": [
            "Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090, Novosibirsk, Russia", 
            "Novosibirsk State University, 630090, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lomzov", 
        "givenName": "A. A.", 
        "id": "sg:person.0622200035.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0622200035.36"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nprot.2008.104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016626537", 
          "https://doi.org/10.1038/nprot.2008.104"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1068162021020151", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1137495805", 
          "https://doi.org/10.1134/s1068162021020151"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2021-11", 
    "datePublishedReg": "2021-11-01", 
    "description": "The development of approaches for predictive calculation of hybridization properties of various nucleic acid (NA) derivatives is the basis for the rational design of the NA-based constructs. Modern advances in computer modeling methods provide the feasibility of these calculations. We have analyzed the possibility of calculating the energy of DNA/RNA and RNA/RNA duplex formation using representative sets of complexes (65 and 75 complexes, respectively). We used the classical molecular dynamics (MD) method, the MMPBSA or MMGBSA approaches to calculate the enthalpy (\u0394H\u00b0) component, and the quasi-harmonic approximation (Q-Harm) or the normal mode analysis (NMA) methods to calculate the entropy (\u0394S\u00b0) contribution to the Gibbs energy (\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\Delta G_{{37}}^{^\\circ }$$\\end{document} ) of the NA complex formation. We have found that the MMGBSA method in the analysis of the MD trajectory of only the NA duplex and the empirical linear approximation allow calculation of the enthalpy of formation of the DNA, RNA, and hybrid duplexes of various lengths and GC content with an accuracy of 8.6%. Within each type of complex, the combination of rather efficient MMGBSA and Q-Harm approaches being applied to the trajectory of only the bimolecular complex makes it possible to calculate the \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\Delta G_{{37}}^{^\\circ }$$\\end{document} of the duplex formation with an error value of 10%. The high accuracy of predictive calculation for different types of natural complexes (DNA/RNA, DNA/RNA, and RNA/RNA) indicates the possibility of extending the considered approach to analogs and derivatives of nucleic acids, which gives a fundamental opportunity in the future to perform rational design of new types of NA-targeted sequence-specific compounds.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s002689332105006x", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1371988", 
        "issn": [
          "0026-8933", 
          "1608-3245"
        ], 
        "name": "Molecular Biology", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "55"
      }
    ], 
    "keywords": [
      "RNA duplex formation", 
      "DNA/RNA duplex formation", 
      "GC content", 
      "DNA/RNA", 
      "duplex formation", 
      "RNA/RNA", 
      "MMGBSA approach", 
      "RNA", 
      "hybrid duplexes", 
      "complex formation", 
      "nucleic acids", 
      "rational design", 
      "NA duplex", 
      "MD trajectories", 
      "MMGBSA method", 
      "natural complexes", 
      "complexes", 
      "bimolecular complexes", 
      "development of approaches", 
      "molecular dynamics simulations", 
      "duplex", 
      "types of complexes", 
      "DNA", 
      "nucleic acid derivatives", 
      "formation", 
      "dynamics simulations", 
      "classical molecular dynamics method", 
      "enthalpy component", 
      "fundamental opportunities", 
      "representative set", 
      "molecular dynamics method", 
      "MMGBSA", 
      "enthalpies of formation", 
      "acid", 
      "hybridization properties", 
      "types", 
      "acid derivatives", 
      "normal mode analysis method", 
      "constructs", 
      "predictive calculations", 
      "MMPBSA", 
      "entropy contribution", 
      "modern advances", 
      "Gibbs energy", 
      "advances", 
      "computer modeling methods", 
      "development", 
      "Na", 
      "basis", 
      "calculation of energy", 
      "derivatives", 
      "dynamics method", 
      "components", 
      "compounds", 
      "quasi-harmonic approximation", 
      "analogues", 
      "calculations", 
      "possibility", 
      "content", 
      "analysis", 
      "length", 
      "different types", 
      "approach", 
      "combination", 
      "new type", 
      "energy", 
      "enthalpy", 
      "contribution", 
      "set", 
      "opportunities", 
      "properties", 
      "trajectories", 
      "future", 
      "method", 
      "mode analysis method", 
      "linear approximation", 
      "analysis method", 
      "modeling method", 
      "approximation", 
      "design", 
      "values", 
      "high accuracy", 
      "error values", 
      "simulations", 
      "accuracy", 
      "feasibility"
    ], 
    "name": "Calculation of Energy for RNA/RNA and DNA/RNA Duplex Formation by Molecular Dynamics Simulation", 
    "pagination": "927-940", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1143980398"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s002689332105006x"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s002689332105006x", 
      "https://app.dimensions.ai/details/publication/pub.1143980398"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_903.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s002689332105006x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s002689332105006x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s002689332105006x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s002689332105006x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s002689332105006x'


 

This table displays all metadata directly associated to this object as RDF triples.

167 TRIPLES      22 PREDICATES      114 URIs      104 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s002689332105006x schema:about anzsrc-for:06
2 anzsrc-for:0604
3 schema:author N66432b27a6fd4a87a298d9592c93557d
4 schema:citation sg:pub.10.1038/nprot.2008.104
5 sg:pub.10.1134/s1068162021020151
6 schema:datePublished 2021-11
7 schema:datePublishedReg 2021-11-01
8 schema:description The development of approaches for predictive calculation of hybridization properties of various nucleic acid (NA) derivatives is the basis for the rational design of the NA-based constructs. Modern advances in computer modeling methods provide the feasibility of these calculations. We have analyzed the possibility of calculating the energy of DNA/RNA and RNA/RNA duplex formation using representative sets of complexes (65 and 75 complexes, respectively). We used the classical molecular dynamics (MD) method, the MMPBSA or MMGBSA approaches to calculate the enthalpy (ΔH°) component, and the quasi-harmonic approximation (Q-Harm) or the normal mode analysis (NMA) methods to calculate the entropy (ΔS°) contribution to the Gibbs energy (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta G_{{37}}^{^\circ }$$\end{document} ) of the NA complex formation. We have found that the MMGBSA method in the analysis of the MD trajectory of only the NA duplex and the empirical linear approximation allow calculation of the enthalpy of formation of the DNA, RNA, and hybrid duplexes of various lengths and GC content with an accuracy of 8.6%. Within each type of complex, the combination of rather efficient MMGBSA and Q-Harm approaches being applied to the trajectory of only the bimolecular complex makes it possible to calculate the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta G_{{37}}^{^\circ }$$\end{document} of the duplex formation with an error value of 10%. The high accuracy of predictive calculation for different types of natural complexes (DNA/RNA, DNA/RNA, and RNA/RNA) indicates the possibility of extending the considered approach to analogs and derivatives of nucleic acids, which gives a fundamental opportunity in the future to perform rational design of new types of NA-targeted sequence-specific compounds.
9 schema:genre article
10 schema:inLanguage en
11 schema:isAccessibleForFree true
12 schema:isPartOf N6583aadcbdd3445b89fbf8af39943848
13 Nf1bd3c8b2e8a4e76b818cdab1646c169
14 sg:journal.1371988
15 schema:keywords DNA
16 DNA/RNA
17 DNA/RNA duplex formation
18 GC content
19 Gibbs energy
20 MD trajectories
21 MMGBSA
22 MMGBSA approach
23 MMGBSA method
24 MMPBSA
25 NA duplex
26 Na
27 RNA
28 RNA duplex formation
29 RNA/RNA
30 accuracy
31 acid
32 acid derivatives
33 advances
34 analogues
35 analysis
36 analysis method
37 approach
38 approximation
39 basis
40 bimolecular complexes
41 calculation of energy
42 calculations
43 classical molecular dynamics method
44 combination
45 complex formation
46 complexes
47 components
48 compounds
49 computer modeling methods
50 constructs
51 content
52 contribution
53 derivatives
54 design
55 development
56 development of approaches
57 different types
58 duplex
59 duplex formation
60 dynamics method
61 dynamics simulations
62 energy
63 enthalpies of formation
64 enthalpy
65 enthalpy component
66 entropy contribution
67 error values
68 feasibility
69 formation
70 fundamental opportunities
71 future
72 high accuracy
73 hybrid duplexes
74 hybridization properties
75 length
76 linear approximation
77 method
78 mode analysis method
79 modeling method
80 modern advances
81 molecular dynamics method
82 molecular dynamics simulations
83 natural complexes
84 new type
85 normal mode analysis method
86 nucleic acid derivatives
87 nucleic acids
88 opportunities
89 possibility
90 predictive calculations
91 properties
92 quasi-harmonic approximation
93 rational design
94 representative set
95 set
96 simulations
97 trajectories
98 types
99 types of complexes
100 values
101 schema:name Calculation of Energy for RNA/RNA and DNA/RNA Duplex Formation by Molecular Dynamics Simulation
102 schema:pagination 927-940
103 schema:productId N5070324cadbd4b42bdbd626c4bd785ef
104 N779f10020f584959b8fe5ce6867c97f8
105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1143980398
106 https://doi.org/10.1134/s002689332105006x
107 schema:sdDatePublished 2022-05-20T07:39
108 schema:sdLicense https://scigraph.springernature.com/explorer/license/
109 schema:sdPublisher N2e50cc9be179487eb72c04511f4d5f9e
110 schema:url https://doi.org/10.1134/s002689332105006x
111 sgo:license sg:explorer/license/
112 sgo:sdDataset articles
113 rdf:type schema:ScholarlyArticle
114 N2e50cc9be179487eb72c04511f4d5f9e schema:name Springer Nature - SN SciGraph project
115 rdf:type schema:Organization
116 N5070324cadbd4b42bdbd626c4bd785ef schema:name doi
117 schema:value 10.1134/s002689332105006x
118 rdf:type schema:PropertyValue
119 N6583aadcbdd3445b89fbf8af39943848 schema:volumeNumber 55
120 rdf:type schema:PublicationVolume
121 N66432b27a6fd4a87a298d9592c93557d rdf:first sg:person.01075604075.23
122 rdf:rest Nc12c26ba5f3645aaaf5013f72468cb10
123 N779f10020f584959b8fe5ce6867c97f8 schema:name dimensions_id
124 schema:value pub.1143980398
125 rdf:type schema:PropertyValue
126 Nc0bc27c4838745d2959ad9133e0323fd rdf:first sg:person.0622200035.36
127 rdf:rest rdf:nil
128 Nc12c26ba5f3645aaaf5013f72468cb10 rdf:first sg:person.0607040762.39
129 rdf:rest Nc0bc27c4838745d2959ad9133e0323fd
130 Nf1bd3c8b2e8a4e76b818cdab1646c169 schema:issueNumber 6
131 rdf:type schema:PublicationIssue
132 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
133 schema:name Biological Sciences
134 rdf:type schema:DefinedTerm
135 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
136 schema:name Genetics
137 rdf:type schema:DefinedTerm
138 sg:journal.1371988 schema:issn 0026-8933
139 1608-3245
140 schema:name Molecular Biology
141 schema:publisher Pleiades Publishing
142 rdf:type schema:Periodical
143 sg:person.01075604075.23 schema:affiliation grid-institutes:grid.4605.7
144 schema:familyName Golyshev
145 schema:givenName V. M.
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01075604075.23
147 rdf:type schema:Person
148 sg:person.0607040762.39 schema:affiliation grid-institutes:grid.4605.7
149 schema:familyName Pyshnyi
150 schema:givenName D. V.
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0607040762.39
152 rdf:type schema:Person
153 sg:person.0622200035.36 schema:affiliation grid-institutes:grid.4605.7
154 schema:familyName Lomzov
155 schema:givenName A. A.
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0622200035.36
157 rdf:type schema:Person
158 sg:pub.10.1038/nprot.2008.104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016626537
159 https://doi.org/10.1038/nprot.2008.104
160 rdf:type schema:CreativeWork
161 sg:pub.10.1134/s1068162021020151 schema:sameAs https://app.dimensions.ai/details/publication/pub.1137495805
162 https://doi.org/10.1134/s1068162021020151
163 rdf:type schema:CreativeWork
164 grid-institutes:grid.4605.7 schema:alternateName Novosibirsk State University, 630090, Novosibirsk, Russia
165 schema:name Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090, Novosibirsk, Russia
166 Novosibirsk State University, 630090, Novosibirsk, Russia
167 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...