Ontology type: schema:ScholarlyArticle Open Access: True
2021-11
AUTHORSV. M. Golyshev, D. V. Pyshnyi, A. A. Lomzov
ABSTRACTThe development of approaches for predictive calculation of hybridization properties of various nucleic acid (NA) derivatives is the basis for the rational design of the NA-based constructs. Modern advances in computer modeling methods provide the feasibility of these calculations. We have analyzed the possibility of calculating the energy of DNA/RNA and RNA/RNA duplex formation using representative sets of complexes (65 and 75 complexes, respectively). We used the classical molecular dynamics (MD) method, the MMPBSA or MMGBSA approaches to calculate the enthalpy (ΔH°) component, and the quasi-harmonic approximation (Q-Harm) or the normal mode analysis (NMA) methods to calculate the entropy (ΔS°) contribution to the Gibbs energy (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta G_{{37}}^{^\circ }$$\end{document} ) of the NA complex formation. We have found that the MMGBSA method in the analysis of the MD trajectory of only the NA duplex and the empirical linear approximation allow calculation of the enthalpy of formation of the DNA, RNA, and hybrid duplexes of various lengths and GC content with an accuracy of 8.6%. Within each type of complex, the combination of rather efficient MMGBSA and Q-Harm approaches being applied to the trajectory of only the bimolecular complex makes it possible to calculate the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta G_{{37}}^{^\circ }$$\end{document} of the duplex formation with an error value of 10%. The high accuracy of predictive calculation for different types of natural complexes (DNA/RNA, DNA/RNA, and RNA/RNA) indicates the possibility of extending the considered approach to analogs and derivatives of nucleic acids, which gives a fundamental opportunity in the future to perform rational design of new types of NA-targeted sequence-specific compounds. More... »
PAGES927-940
http://scigraph.springernature.com/pub.10.1134/s002689332105006x
DOIhttp://dx.doi.org/10.1134/s002689332105006x
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1143980398
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Biological Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Genetics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Novosibirsk State University, 630090, Novosibirsk, Russia",
"id": "http://www.grid.ac/institutes/grid.4605.7",
"name": [
"Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090, Novosibirsk, Russia",
"Novosibirsk State University, 630090, Novosibirsk, Russia"
],
"type": "Organization"
},
"familyName": "Golyshev",
"givenName": "V. M.",
"id": "sg:person.01075604075.23",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01075604075.23"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Novosibirsk State University, 630090, Novosibirsk, Russia",
"id": "http://www.grid.ac/institutes/grid.4605.7",
"name": [
"Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090, Novosibirsk, Russia",
"Novosibirsk State University, 630090, Novosibirsk, Russia"
],
"type": "Organization"
},
"familyName": "Pyshnyi",
"givenName": "D. V.",
"id": "sg:person.0607040762.39",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0607040762.39"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Novosibirsk State University, 630090, Novosibirsk, Russia",
"id": "http://www.grid.ac/institutes/grid.4605.7",
"name": [
"Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090, Novosibirsk, Russia",
"Novosibirsk State University, 630090, Novosibirsk, Russia"
],
"type": "Organization"
},
"familyName": "Lomzov",
"givenName": "A. A.",
"id": "sg:person.0622200035.36",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0622200035.36"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1038/nprot.2008.104",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1016626537",
"https://doi.org/10.1038/nprot.2008.104"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1134/s1068162021020151",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1137495805",
"https://doi.org/10.1134/s1068162021020151"
],
"type": "CreativeWork"
}
],
"datePublished": "2021-11",
"datePublishedReg": "2021-11-01",
"description": "The development of approaches for predictive calculation of hybridization properties of various nucleic acid (NA) derivatives is the basis for the rational design of the NA-based constructs. Modern advances in computer modeling methods provide the feasibility of these calculations. We have analyzed the possibility of calculating the energy of DNA/RNA and RNA/RNA duplex formation using representative sets of complexes (65 and 75 complexes, respectively). We used the classical molecular dynamics (MD) method, the MMPBSA or MMGBSA approaches to calculate the enthalpy (\u0394H\u00b0) component, and the quasi-harmonic approximation (Q-Harm) or the normal mode analysis (NMA) methods to calculate the entropy (\u0394S\u00b0) contribution to the Gibbs energy (\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\Delta G_{{37}}^{^\\circ }$$\\end{document} ) of the NA complex formation. We have found that the MMGBSA method in the analysis of the MD trajectory of only the NA duplex and the empirical linear approximation allow calculation of the enthalpy of formation of the DNA, RNA, and hybrid duplexes of various lengths and GC content with an accuracy of 8.6%. Within each type of complex, the combination of rather efficient MMGBSA and Q-Harm approaches being applied to the trajectory of only the bimolecular complex makes it possible to calculate the \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\Delta G_{{37}}^{^\\circ }$$\\end{document} of the duplex formation with an error value of 10%. The high accuracy of predictive calculation for different types of natural complexes (DNA/RNA, DNA/RNA, and RNA/RNA) indicates the possibility of extending the considered approach to analogs and derivatives of nucleic acids, which gives a fundamental opportunity in the future to perform rational design of new types of NA-targeted sequence-specific compounds.",
"genre": "article",
"id": "sg:pub.10.1134/s002689332105006x",
"inLanguage": "en",
"isAccessibleForFree": true,
"isPartOf": [
{
"id": "sg:journal.1371988",
"issn": [
"0026-8933",
"1608-3245"
],
"name": "Molecular Biology",
"publisher": "Pleiades Publishing",
"type": "Periodical"
},
{
"issueNumber": "6",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "55"
}
],
"keywords": [
"RNA duplex formation",
"DNA/RNA duplex formation",
"GC content",
"DNA/RNA",
"duplex formation",
"RNA/RNA",
"MMGBSA approach",
"RNA",
"hybrid duplexes",
"complex formation",
"nucleic acids",
"rational design",
"NA duplex",
"MD trajectories",
"MMGBSA method",
"natural complexes",
"complexes",
"bimolecular complexes",
"development of approaches",
"molecular dynamics simulations",
"duplex",
"types of complexes",
"DNA",
"nucleic acid derivatives",
"formation",
"dynamics simulations",
"classical molecular dynamics method",
"enthalpy component",
"fundamental opportunities",
"representative set",
"molecular dynamics method",
"MMGBSA",
"enthalpies of formation",
"acid",
"hybridization properties",
"types",
"acid derivatives",
"normal mode analysis method",
"constructs",
"predictive calculations",
"MMPBSA",
"entropy contribution",
"modern advances",
"Gibbs energy",
"advances",
"computer modeling methods",
"development",
"Na",
"basis",
"calculation of energy",
"derivatives",
"dynamics method",
"components",
"compounds",
"quasi-harmonic approximation",
"analogues",
"calculations",
"possibility",
"content",
"analysis",
"length",
"different types",
"approach",
"combination",
"new type",
"energy",
"enthalpy",
"contribution",
"set",
"opportunities",
"properties",
"trajectories",
"future",
"method",
"mode analysis method",
"linear approximation",
"analysis method",
"modeling method",
"approximation",
"design",
"values",
"high accuracy",
"error values",
"simulations",
"accuracy",
"feasibility"
],
"name": "Calculation of Energy for RNA/RNA and DNA/RNA Duplex Formation by Molecular Dynamics Simulation",
"pagination": "927-940",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1143980398"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1134/s002689332105006x"
]
}
],
"sameAs": [
"https://doi.org/10.1134/s002689332105006x",
"https://app.dimensions.ai/details/publication/pub.1143980398"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:39",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_903.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1134/s002689332105006x"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s002689332105006x'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s002689332105006x'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s002689332105006x'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s002689332105006x'
This table displays all metadata directly associated to this object as RDF triples.
167 TRIPLES
22 PREDICATES
114 URIs
104 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1134/s002689332105006x | schema:about | anzsrc-for:06 |
2 | ″ | ″ | anzsrc-for:0604 |
3 | ″ | schema:author | N66432b27a6fd4a87a298d9592c93557d |
4 | ″ | schema:citation | sg:pub.10.1038/nprot.2008.104 |
5 | ″ | ″ | sg:pub.10.1134/s1068162021020151 |
6 | ″ | schema:datePublished | 2021-11 |
7 | ″ | schema:datePublishedReg | 2021-11-01 |
8 | ″ | schema:description | The development of approaches for predictive calculation of hybridization properties of various nucleic acid (NA) derivatives is the basis for the rational design of the NA-based constructs. Modern advances in computer modeling methods provide the feasibility of these calculations. We have analyzed the possibility of calculating the energy of DNA/RNA and RNA/RNA duplex formation using representative sets of complexes (65 and 75 complexes, respectively). We used the classical molecular dynamics (MD) method, the MMPBSA or MMGBSA approaches to calculate the enthalpy (ΔH°) component, and the quasi-harmonic approximation (Q-Harm) or the normal mode analysis (NMA) methods to calculate the entropy (ΔS°) contribution to the Gibbs energy (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta G_{{37}}^{^\circ }$$\end{document} ) of the NA complex formation. We have found that the MMGBSA method in the analysis of the MD trajectory of only the NA duplex and the empirical linear approximation allow calculation of the enthalpy of formation of the DNA, RNA, and hybrid duplexes of various lengths and GC content with an accuracy of 8.6%. Within each type of complex, the combination of rather efficient MMGBSA and Q-Harm approaches being applied to the trajectory of only the bimolecular complex makes it possible to calculate the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta G_{{37}}^{^\circ }$$\end{document} of the duplex formation with an error value of 10%. The high accuracy of predictive calculation for different types of natural complexes (DNA/RNA, DNA/RNA, and RNA/RNA) indicates the possibility of extending the considered approach to analogs and derivatives of nucleic acids, which gives a fundamental opportunity in the future to perform rational design of new types of NA-targeted sequence-specific compounds. |
9 | ″ | schema:genre | article |
10 | ″ | schema:inLanguage | en |
11 | ″ | schema:isAccessibleForFree | true |
12 | ″ | schema:isPartOf | N6583aadcbdd3445b89fbf8af39943848 |
13 | ″ | ″ | Nf1bd3c8b2e8a4e76b818cdab1646c169 |
14 | ″ | ″ | sg:journal.1371988 |
15 | ″ | schema:keywords | DNA |
16 | ″ | ″ | DNA/RNA |
17 | ″ | ″ | DNA/RNA duplex formation |
18 | ″ | ″ | GC content |
19 | ″ | ″ | Gibbs energy |
20 | ″ | ″ | MD trajectories |
21 | ″ | ″ | MMGBSA |
22 | ″ | ″ | MMGBSA approach |
23 | ″ | ″ | MMGBSA method |
24 | ″ | ″ | MMPBSA |
25 | ″ | ″ | NA duplex |
26 | ″ | ″ | Na |
27 | ″ | ″ | RNA |
28 | ″ | ″ | RNA duplex formation |
29 | ″ | ″ | RNA/RNA |
30 | ″ | ″ | accuracy |
31 | ″ | ″ | acid |
32 | ″ | ″ | acid derivatives |
33 | ″ | ″ | advances |
34 | ″ | ″ | analogues |
35 | ″ | ″ | analysis |
36 | ″ | ″ | analysis method |
37 | ″ | ″ | approach |
38 | ″ | ″ | approximation |
39 | ″ | ″ | basis |
40 | ″ | ″ | bimolecular complexes |
41 | ″ | ″ | calculation of energy |
42 | ″ | ″ | calculations |
43 | ″ | ″ | classical molecular dynamics method |
44 | ″ | ″ | combination |
45 | ″ | ″ | complex formation |
46 | ″ | ″ | complexes |
47 | ″ | ″ | components |
48 | ″ | ″ | compounds |
49 | ″ | ″ | computer modeling methods |
50 | ″ | ″ | constructs |
51 | ″ | ″ | content |
52 | ″ | ″ | contribution |
53 | ″ | ″ | derivatives |
54 | ″ | ″ | design |
55 | ″ | ″ | development |
56 | ″ | ″ | development of approaches |
57 | ″ | ″ | different types |
58 | ″ | ″ | duplex |
59 | ″ | ″ | duplex formation |
60 | ″ | ″ | dynamics method |
61 | ″ | ″ | dynamics simulations |
62 | ″ | ″ | energy |
63 | ″ | ″ | enthalpies of formation |
64 | ″ | ″ | enthalpy |
65 | ″ | ″ | enthalpy component |
66 | ″ | ″ | entropy contribution |
67 | ″ | ″ | error values |
68 | ″ | ″ | feasibility |
69 | ″ | ″ | formation |
70 | ″ | ″ | fundamental opportunities |
71 | ″ | ″ | future |
72 | ″ | ″ | high accuracy |
73 | ″ | ″ | hybrid duplexes |
74 | ″ | ″ | hybridization properties |
75 | ″ | ″ | length |
76 | ″ | ″ | linear approximation |
77 | ″ | ″ | method |
78 | ″ | ″ | mode analysis method |
79 | ″ | ″ | modeling method |
80 | ″ | ″ | modern advances |
81 | ″ | ″ | molecular dynamics method |
82 | ″ | ″ | molecular dynamics simulations |
83 | ″ | ″ | natural complexes |
84 | ″ | ″ | new type |
85 | ″ | ″ | normal mode analysis method |
86 | ″ | ″ | nucleic acid derivatives |
87 | ″ | ″ | nucleic acids |
88 | ″ | ″ | opportunities |
89 | ″ | ″ | possibility |
90 | ″ | ″ | predictive calculations |
91 | ″ | ″ | properties |
92 | ″ | ″ | quasi-harmonic approximation |
93 | ″ | ″ | rational design |
94 | ″ | ″ | representative set |
95 | ″ | ″ | set |
96 | ″ | ″ | simulations |
97 | ″ | ″ | trajectories |
98 | ″ | ″ | types |
99 | ″ | ″ | types of complexes |
100 | ″ | ″ | values |
101 | ″ | schema:name | Calculation of Energy for RNA/RNA and DNA/RNA Duplex Formation by Molecular Dynamics Simulation |
102 | ″ | schema:pagination | 927-940 |
103 | ″ | schema:productId | N5070324cadbd4b42bdbd626c4bd785ef |
104 | ″ | ″ | N779f10020f584959b8fe5ce6867c97f8 |
105 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1143980398 |
106 | ″ | ″ | https://doi.org/10.1134/s002689332105006x |
107 | ″ | schema:sdDatePublished | 2022-05-20T07:39 |
108 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
109 | ″ | schema:sdPublisher | N2e50cc9be179487eb72c04511f4d5f9e |
110 | ″ | schema:url | https://doi.org/10.1134/s002689332105006x |
111 | ″ | sgo:license | sg:explorer/license/ |
112 | ″ | sgo:sdDataset | articles |
113 | ″ | rdf:type | schema:ScholarlyArticle |
114 | N2e50cc9be179487eb72c04511f4d5f9e | schema:name | Springer Nature - SN SciGraph project |
115 | ″ | rdf:type | schema:Organization |
116 | N5070324cadbd4b42bdbd626c4bd785ef | schema:name | doi |
117 | ″ | schema:value | 10.1134/s002689332105006x |
118 | ″ | rdf:type | schema:PropertyValue |
119 | N6583aadcbdd3445b89fbf8af39943848 | schema:volumeNumber | 55 |
120 | ″ | rdf:type | schema:PublicationVolume |
121 | N66432b27a6fd4a87a298d9592c93557d | rdf:first | sg:person.01075604075.23 |
122 | ″ | rdf:rest | Nc12c26ba5f3645aaaf5013f72468cb10 |
123 | N779f10020f584959b8fe5ce6867c97f8 | schema:name | dimensions_id |
124 | ″ | schema:value | pub.1143980398 |
125 | ″ | rdf:type | schema:PropertyValue |
126 | Nc0bc27c4838745d2959ad9133e0323fd | rdf:first | sg:person.0622200035.36 |
127 | ″ | rdf:rest | rdf:nil |
128 | Nc12c26ba5f3645aaaf5013f72468cb10 | rdf:first | sg:person.0607040762.39 |
129 | ″ | rdf:rest | Nc0bc27c4838745d2959ad9133e0323fd |
130 | Nf1bd3c8b2e8a4e76b818cdab1646c169 | schema:issueNumber | 6 |
131 | ″ | rdf:type | schema:PublicationIssue |
132 | anzsrc-for:06 | schema:inDefinedTermSet | anzsrc-for: |
133 | ″ | schema:name | Biological Sciences |
134 | ″ | rdf:type | schema:DefinedTerm |
135 | anzsrc-for:0604 | schema:inDefinedTermSet | anzsrc-for: |
136 | ″ | schema:name | Genetics |
137 | ″ | rdf:type | schema:DefinedTerm |
138 | sg:journal.1371988 | schema:issn | 0026-8933 |
139 | ″ | ″ | 1608-3245 |
140 | ″ | schema:name | Molecular Biology |
141 | ″ | schema:publisher | Pleiades Publishing |
142 | ″ | rdf:type | schema:Periodical |
143 | sg:person.01075604075.23 | schema:affiliation | grid-institutes:grid.4605.7 |
144 | ″ | schema:familyName | Golyshev |
145 | ″ | schema:givenName | V. M. |
146 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01075604075.23 |
147 | ″ | rdf:type | schema:Person |
148 | sg:person.0607040762.39 | schema:affiliation | grid-institutes:grid.4605.7 |
149 | ″ | schema:familyName | Pyshnyi |
150 | ″ | schema:givenName | D. V. |
151 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0607040762.39 |
152 | ″ | rdf:type | schema:Person |
153 | sg:person.0622200035.36 | schema:affiliation | grid-institutes:grid.4605.7 |
154 | ″ | schema:familyName | Lomzov |
155 | ″ | schema:givenName | A. A. |
156 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0622200035.36 |
157 | ″ | rdf:type | schema:Person |
158 | sg:pub.10.1038/nprot.2008.104 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1016626537 |
159 | ″ | ″ | https://doi.org/10.1038/nprot.2008.104 |
160 | ″ | rdf:type | schema:CreativeWork |
161 | sg:pub.10.1134/s1068162021020151 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1137495805 |
162 | ″ | ″ | https://doi.org/10.1134/s1068162021020151 |
163 | ″ | rdf:type | schema:CreativeWork |
164 | grid-institutes:grid.4605.7 | schema:alternateName | Novosibirsk State University, 630090, Novosibirsk, Russia |
165 | ″ | schema:name | Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090, Novosibirsk, Russia |
166 | ″ | ″ | Novosibirsk State University, 630090, Novosibirsk, Russia |
167 | ″ | rdf:type | schema:Organization |