Whole-Genome Duplications in Evolution, Ontogeny, and Pathology: Complexity and Emergency Reserves View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2021-11

AUTHORS

O. V. Anatskaya, A. E. Vinogradov

ABSTRACT

Whole-genome duplication (WGD), or polyploidy, increases the amount of genetic information in the cell. WGDs of whole organisms are found in all branches of eukaryotes and act as a driving force of speciation, complication, and adaptations. Somatic-cell WGDs are observed in all types of tissues and can result from normal or altered ontogenetic programs, regeneration, pathological conditions, aging, malignancy, and metastasis. Despite the versatility of WGDs, their functional significance, general properties, and causes of their higher adaptive potential are unclear. Comparisons of whole-transcriptome data and information from various fields of molecular biology, genomics, and molecular medicine showed several common features for polyploidy of organisms and somatic and cancer cells, making it possible to understand what WGD properties lead to the emergence of an adaptive phenotype. The adaptation potential of WGDs may be associated with an increase in the complexity of the regulation of networks and signaling systems; a higher resistance to stress; and activation of ancient evolutionary programs of unicellularity and pathways of morphogenesis, survival, and life extension. A balance between the cell and organismal levels in controlling gene regulation may shift in stress towards the priority of cell survival, and the shift can lead to cardiovascular diseases and carcinogenesis. The presented information helps to understand how polyploidy creates new phenotypes and why it acts as a driving force of evolution and an important regulator of biological processes in somatic cells during ontogeny, pathogenesis, regeneration, and transformation. More... »

PAGES

813-827

References to SciGraph publications

  • 1991. Two germ cell lineages with genomes of different species in one and the same animal in HEREDITAS
  • 2008-12. Turning a hobby into a job: How duplicated genes find new functions in NATURE REVIEWS GENETICS
  • 2021-01-28. Proliferative polyploid cells give rise to tumors via ploidy reduction in NATURE COMMUNICATIONS
  • 2017-04-07. Evolution of the duplicated intracellular lipid-binding protein genes of teleost fishes in MOLECULAR GENETICS AND GENOMICS
  • 2012-09. Remodeling of rat cardiomyocytes after neonatal cryptosporidiosis. II. Deformation, excessive polyploidization, and HIF-1α overexpression in CELL AND TISSUE BIOLOGY
  • 2018-04-30. Gene retention, fractionation and subgenome differences in polyploid plants in NATURE PLANTS
  • 2020-04-02. Polyploidy in liver development, homeostasis and disease in NATURE REVIEWS GASTROENTEROLOGY & HEPATOLOGY
  • 2017-08-07. Frequency of mononuclear diploid cardiomyocytes underlies natural variation in heart regeneration in NATURE GENETICS
  • <error retrieving object. in <ERROR RETRIEVING OBJECT
  • 2014-10-22. Dynamic DNA methylation orchestrates cardiomyocyte development, maturation and disease in NATURE COMMUNICATIONS
  • 2019-06-13. Cardiac interstitial tetraploid cells can escape replicative senescence in rodents but not large mammals in COMMUNICATIONS BIOLOGY
  • 2010-08-02. MOS, aneuploidy and the ploidy cycle of cancer cells in ONCOGENE
  • 2017-06-14. Lineage-specific rediploidization is a mechanism to explain time-lags between genome duplication and evolutionary diversification in GENOME BIOLOGY
  • 2017-01-10. Transcriptome analysis of neo-tetraploid rice reveals specific differential gene expressions associated with fertility and heterosis in SCIENTIFIC REPORTS
  • 2019-01-29. The global biogeography of polyploid plants in NATURE ECOLOGY & EVOLUTION
  • 2013-09. Changes in the heart of neonatal rats after cryptosporidial gastroenteritis of different degrees of severity in JOURNAL OF EVOLUTIONARY BIOCHEMISTRY AND PHYSIOLOGY
  • 2009-01-14. Global Versus Local Centrality in Evolution of Yeast Protein Network in JOURNAL OF MOLECULAR EVOLUTION
  • 2005-10-11. The advantages and disadvantages of being polyploid in NATURE REVIEWS GENETICS
  • 2018-11. The Role of Linker Histones in Chromatin Structural Organization. 1. H1 Family Histones in BIOPHYSICS
  • 2010-07-13. Somatic polyploidy promotes cell function under stress and energy depletion: evidence from tissue-specific mammal transcriptome in FUNCTIONAL & INTEGRATIVE GENOMICS
  • 2016-05-16. Polycomb repressive complex 1 controls uterine decidualization in SCIENTIFIC REPORTS
  • 2017-05-15. The evolutionary significance of polyploidy in NATURE REVIEWS GENETICS
  • 1970. Evolution by Gene Duplication in NONE
  • 2017-01-25. Polyploidy and community structure in NATURE MICROBIOLOGY
  • 2005-01-13. Genome size and chromatin condensation in vertebrates in CHROMOSOMA
  • 2020-03. The Role of Linker Histones in Chromatin Structural Organization. 2. Interaction with DNA and Nuclear Proteins in BIOPHYSICS
  • 2020-03-29. Sensitivity to gene dosage and gene expression affects genes with copy number variants observed among neuropsychiatric diseases in BMC MEDICAL GENOMICS
  • 2016-08-01. Whole-genome duplication as a key factor in crop domestication in NATURE PLANTS
  • 2014-11-06. CDK1 plays an important role in the maintenance of pluripotency and genomic stability in human pluripotent stem cells in CELL DEATH & DISEASE
  • 2019-10-23. Pan-cancer whole-genome analyses of metastatic solid tumours in NATURE
  • 2017-03-13. Reconstructing the genome of the most recent common ancestor of flowering plants in NATURE GENETICS
  • 2008-09-22. Expression and functional analysis of G1 to S regulatory components reveals an important role for CDK2 in cell cycle regulation in human embryonic stem cells in ONCOGENE
  • 1994-05. Polyploidy in cardiac myocytes of normal and hypertrophic human hearts; range of values in VIRCHOWS ARCHIV
  • 2018-09-05. Increased insulin-like growth factor 1 production by polyploid adipose stem cells promotes growth of breast cancer cells in BMC CANCER
  • 2012-11-13. Transcriptome analysis of the spalax hypoxia survival response includes suppression of apoptosis and tight control of angiogenesis in BMC GENOMICS
  • 2020-03-30. The sterlet sturgeon genome sequence and the mechanisms of segmental rediploidization in NATURE ECOLOGY & EVOLUTION
  • 2021-03-01. Vertebrate cardiac regeneration: evolutionary and developmental perspectives in CELL REGENERATION
  • 1991-01. ZZW autotriploidy in a Blue-and-Yellow Macaw in GENETICA
  • 2017-04-24. Dedifferentiation into blastomere-like cancer stem cells via formation of polyploid giant cancer cells in ONCOGENE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1134/s0026893321050022

    DOI

    http://dx.doi.org/10.1134/s0026893321050022

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1143980395


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biochemistry and Cell Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Institute of Cytology, Russian Academy of Sciences, 194064, St. Petersburg, Russia", 
              "id": "http://www.grid.ac/institutes/grid.418947.7", 
              "name": [
                "Institute of Cytology, Russian Academy of Sciences, 194064, St. Petersburg, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Anatskaya", 
            "givenName": "O. V.", 
            "id": "sg:person.01027537432.20", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01027537432.20"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Cytology, Russian Academy of Sciences, 194064, St. Petersburg, Russia", 
              "id": "http://www.grid.ac/institutes/grid.418947.7", 
              "name": [
                "Institute of Cytology, Russian Academy of Sciences, 194064, St. Petersburg, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Vinogradov", 
            "givenName": "A. E.", 
            "id": "sg:person.0605460146.03", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0605460146.03"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf00190566", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014373339", 
              "https://doi.org/10.1007/bf00190566"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41586-019-1689-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1122019643", 
              "https://doi.org/10.1038/s41586-019-1689-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00239-008-9185-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050930140", 
              "https://doi.org/10.1007/s00239-008-9185-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/onc.2010.310", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042424693", 
              "https://doi.org/10.1038/onc.2010.310"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-021-20916-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1134928566", 
              "https://doi.org/10.1038/s41467-021-20916-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s0006350918060064", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1112435562", 
              "https://doi.org/10.1134/s0006350918060064"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00127249", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014541850", 
              "https://doi.org/10.1007/bf00127249"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00438-017-1313-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084517837", 
              "https://doi.org/10.1007/s00438-017-1313-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg2482", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010022626", 
              "https://doi.org/10.1038/nrg2482"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s0022093013050071", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032815680", 
              "https://doi.org/10.1134/s0022093013050071"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12920-020-0699-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1125973556", 
              "https://doi.org/10.1186/s12920-020-0699-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41477-018-0136-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103640986", 
              "https://doi.org/10.1038/s41477-018-0136-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.3929", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091083452", 
              "https://doi.org/10.1038/ng.3929"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41575-020-0284-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1126052988", 
              "https://doi.org/10.1038/s41575-020-0284-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s0006350920020049", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1128770416", 
              "https://doi.org/10.1134/s0006350920020049"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/onc.2013.96", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051752409", 
              "https://doi.org/10.1038/onc.2013.96"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13619-020-00068-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1135821281", 
              "https://doi.org/10.1186/s13619-020-00068-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nplants.2016.115", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032757438", 
              "https://doi.org/10.1038/nplants.2016.115"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1111/j.1601-5223.1991.tb00331.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044867149", 
              "https://doi.org/10.1111/j.1601-5223.1991.tb00331.x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg.2017.26", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085409542", 
              "https://doi.org/10.1038/nrg.2017.26"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13059-017-1241-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086032661", 
              "https://doi.org/10.1186/s13059-017-1241-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10142-010-0180-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052675282", 
              "https://doi.org/10.1007/s10142-010-0180-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-86659-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006433795", 
              "https://doi.org/10.1007/978-3-642-86659-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/onc.2008.358", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021627237", 
              "https://doi.org/10.1038/onc.2008.358"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.3813", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084129152", 
              "https://doi.org/10.1038/ng.3813"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms6288", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022099256", 
              "https://doi.org/10.1038/ncomms6288"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-13-615", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032309961", 
              "https://doi.org/10.1186/1471-2164-13-615"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/onc.2017.72", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085051794", 
              "https://doi.org/10.1038/onc.2017.72"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmicrobiol.2016.261", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1074212500", 
              "https://doi.org/10.1038/nmicrobiol.2016.261"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep26061", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034424564", 
              "https://doi.org/10.1038/srep26061"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg1711", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022197221", 
              "https://doi.org/10.1038/nrg1711"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep40139", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017526579", 
              "https://doi.org/10.1038/srep40139"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s42003-019-0453-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1117132032", 
              "https://doi.org/10.1038/s42003-019-0453-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00412-004-0323-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004430682", 
              "https://doi.org/10.1007/s00412-004-0323-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s1990519x12050021", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024319852", 
              "https://doi.org/10.1134/s1990519x12050021"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41559-020-1166-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1125979719", 
              "https://doi.org/10.1038/s41559-020-1166-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12885-018-4781-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106678945", 
              "https://doi.org/10.1186/s12885-018-4781-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41559-018-0787-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1111763285", 
              "https://doi.org/10.1038/s41559-018-0787-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/cddis.2014.464", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015071629", 
              "https://doi.org/10.1038/cddis.2014.464"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2021-11", 
        "datePublishedReg": "2021-11-01", 
        "description": "Whole-genome duplication (WGD), or polyploidy, increases the amount of genetic information in the cell. WGDs of whole organisms are found in all branches of eukaryotes and act as a driving force of speciation, complication, and adaptations. Somatic-cell WGDs are observed in all types of tissues and can result from normal or altered ontogenetic programs, regeneration, pathological conditions, aging, malignancy, and metastasis. Despite the versatility of WGDs, their functional significance, general properties, and causes of their higher adaptive potential are unclear. Comparisons of whole-transcriptome data and information from various fields of molecular biology, genomics, and molecular medicine showed several common features for polyploidy of organisms and somatic and cancer cells, making it possible to understand what WGD properties lead to the emergence of an adaptive phenotype. The adaptation potential of WGDs may be associated with an increase in the complexity of the regulation of networks and signaling systems; a higher resistance to stress; and activation of ancient evolutionary programs of unicellularity and pathways of morphogenesis, survival, and life extension. A balance between the cell and organismal levels in controlling gene regulation may shift in stress towards the priority of cell survival, and the shift can lead to cardiovascular diseases and carcinogenesis. The presented information helps to understand how polyploidy creates new phenotypes and why it acts as a driving force of evolution and an important regulator of biological processes in somatic cells during ontogeny, pathogenesis, regeneration, and transformation.", 
        "genre": "article", 
        "id": "sg:pub.10.1134/s0026893321050022", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1371988", 
            "issn": [
              "0026-8933", 
              "1608-3245"
            ], 
            "name": "Molecular Biology", 
            "publisher": "Pleiades Publishing", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "55"
          }
        ], 
        "keywords": [
          "whole genome duplication", 
          "force of speciation", 
          "force of evolution", 
          "high adaptive potential", 
          "pathways of morphogenesis", 
          "whole transcriptome data", 
          "genome duplication", 
          "adaptive phenotypes", 
          "organismal level", 
          "gene regulation", 
          "regulation of networks", 
          "adaptive potential", 
          "somatic cells", 
          "ontogenetic program", 
          "genetic information", 
          "whole organism", 
          "biological processes", 
          "molecular biology", 
          "cell survival", 
          "important regulator", 
          "new phenotypes", 
          "functional significance", 
          "adaptation potential", 
          "polyploidy", 
          "cancer cells", 
          "molecular medicine", 
          "organisms", 
          "type of tissue", 
          "duplication", 
          "pathological conditions", 
          "phenotype", 
          "cells", 
          "regulation", 
          "ontogeny", 
          "eukaryotes", 
          "unicellularity", 
          "genomics", 
          "morphogenesis", 
          "common feature", 
          "evolutionary program", 
          "regeneration", 
          "biology", 
          "regulator", 
          "speciation", 
          "evolution", 
          "pathway", 
          "high resistance", 
          "survival", 
          "activation", 
          "adaptation", 
          "carcinogenesis", 
          "tissue", 
          "reserves", 
          "stress", 
          "general properties", 
          "potential", 
          "life extension", 
          "pathogenesis", 
          "resistance", 
          "aging", 
          "emergence", 
          "metastasis", 
          "levels", 
          "versatility", 
          "information", 
          "cardiovascular disease", 
          "branches", 
          "disease", 
          "significance", 
          "shift", 
          "balance", 
          "types", 
          "complexity", 
          "process", 
          "pathology", 
          "amount", 
          "increase", 
          "conditions", 
          "transformation", 
          "malignancy", 
          "data", 
          "medicine", 
          "features", 
          "program", 
          "comparison", 
          "network", 
          "properties", 
          "system", 
          "cause", 
          "force", 
          "extension", 
          "priority", 
          "field", 
          "emergency reserve", 
          "complications"
        ], 
        "name": "Whole-Genome Duplications in Evolution, Ontogeny, and Pathology: Complexity and Emergency Reserves", 
        "pagination": "813-827", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1143980395"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1134/s0026893321050022"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1134/s0026893321050022", 
          "https://app.dimensions.ai/details/publication/pub.1143980395"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-05-20T07:38", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_878.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1134/s0026893321050022"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0026893321050022'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0026893321050022'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0026893321050022'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0026893321050022'


     

    This table displays all metadata directly associated to this object as RDF triples.

    320 TRIPLES      22 PREDICATES      161 URIs      113 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1134/s0026893321050022 schema:about anzsrc-for:06
    2 anzsrc-for:0601
    3 anzsrc-for:0604
    4 schema:author Nf71ebf30336d4b7299fa455dc18610cb
    5 schema:citation sg:pub.10.1007/978-3-642-86659-3
    6 sg:pub.10.1007/bf00127249
    7 sg:pub.10.1007/bf00190566
    8 sg:pub.10.1007/s00239-008-9185-2
    9 sg:pub.10.1007/s00412-004-0323-3
    10 sg:pub.10.1007/s00438-017-1313-5
    11 sg:pub.10.1007/s10142-010-0180-5
    12 sg:pub.10.1038/cddis.2014.464
    13 sg:pub.10.1038/ncomms6288
    14 sg:pub.10.1038/ng.3813
    15 sg:pub.10.1038/ng.3929
    16 sg:pub.10.1038/nmicrobiol.2016.261
    17 sg:pub.10.1038/nplants.2016.115
    18 sg:pub.10.1038/nrg.2017.26
    19 sg:pub.10.1038/nrg1711
    20 sg:pub.10.1038/nrg2482
    21 sg:pub.10.1038/onc.2008.358
    22 sg:pub.10.1038/onc.2010.310
    23 sg:pub.10.1038/onc.2013.96
    24 sg:pub.10.1038/onc.2017.72
    25 sg:pub.10.1038/s41467-021-20916-y
    26 sg:pub.10.1038/s41477-018-0136-7
    27 sg:pub.10.1038/s41559-018-0787-9
    28 sg:pub.10.1038/s41559-020-1166-x
    29 sg:pub.10.1038/s41575-020-0284-x
    30 sg:pub.10.1038/s41586-019-1689-y
    31 sg:pub.10.1038/s42003-019-0453-z
    32 sg:pub.10.1038/srep26061
    33 sg:pub.10.1038/srep40139
    34 sg:pub.10.1111/j.1601-5223.1991.tb00331.x
    35 sg:pub.10.1134/s0006350918060064
    36 sg:pub.10.1134/s0006350920020049
    37 sg:pub.10.1134/s0022093013050071
    38 sg:pub.10.1134/s1990519x12050021
    39 sg:pub.10.1186/1471-2164-13-615
    40 sg:pub.10.1186/s12885-018-4781-z
    41 sg:pub.10.1186/s12920-020-0699-9
    42 sg:pub.10.1186/s13059-017-1241-z
    43 sg:pub.10.1186/s13619-020-00068-y
    44 schema:datePublished 2021-11
    45 schema:datePublishedReg 2021-11-01
    46 schema:description Whole-genome duplication (WGD), or polyploidy, increases the amount of genetic information in the cell. WGDs of whole organisms are found in all branches of eukaryotes and act as a driving force of speciation, complication, and adaptations. Somatic-cell WGDs are observed in all types of tissues and can result from normal or altered ontogenetic programs, regeneration, pathological conditions, aging, malignancy, and metastasis. Despite the versatility of WGDs, their functional significance, general properties, and causes of their higher adaptive potential are unclear. Comparisons of whole-transcriptome data and information from various fields of molecular biology, genomics, and molecular medicine showed several common features for polyploidy of organisms and somatic and cancer cells, making it possible to understand what WGD properties lead to the emergence of an adaptive phenotype. The adaptation potential of WGDs may be associated with an increase in the complexity of the regulation of networks and signaling systems; a higher resistance to stress; and activation of ancient evolutionary programs of unicellularity and pathways of morphogenesis, survival, and life extension. A balance between the cell and organismal levels in controlling gene regulation may shift in stress towards the priority of cell survival, and the shift can lead to cardiovascular diseases and carcinogenesis. The presented information helps to understand how polyploidy creates new phenotypes and why it acts as a driving force of evolution and an important regulator of biological processes in somatic cells during ontogeny, pathogenesis, regeneration, and transformation.
    47 schema:genre article
    48 schema:inLanguage en
    49 schema:isAccessibleForFree false
    50 schema:isPartOf N0cb9f170eced499ab90f3dfd367285f9
    51 Nf48ee92ec5584a30996285a775f7a841
    52 sg:journal.1371988
    53 schema:keywords activation
    54 adaptation
    55 adaptation potential
    56 adaptive phenotypes
    57 adaptive potential
    58 aging
    59 amount
    60 balance
    61 biological processes
    62 biology
    63 branches
    64 cancer cells
    65 carcinogenesis
    66 cardiovascular disease
    67 cause
    68 cell survival
    69 cells
    70 common feature
    71 comparison
    72 complexity
    73 complications
    74 conditions
    75 data
    76 disease
    77 duplication
    78 emergence
    79 emergency reserve
    80 eukaryotes
    81 evolution
    82 evolutionary program
    83 extension
    84 features
    85 field
    86 force
    87 force of evolution
    88 force of speciation
    89 functional significance
    90 gene regulation
    91 general properties
    92 genetic information
    93 genome duplication
    94 genomics
    95 high adaptive potential
    96 high resistance
    97 important regulator
    98 increase
    99 information
    100 levels
    101 life extension
    102 malignancy
    103 medicine
    104 metastasis
    105 molecular biology
    106 molecular medicine
    107 morphogenesis
    108 network
    109 new phenotypes
    110 ontogenetic program
    111 ontogeny
    112 organismal level
    113 organisms
    114 pathogenesis
    115 pathological conditions
    116 pathology
    117 pathway
    118 pathways of morphogenesis
    119 phenotype
    120 polyploidy
    121 potential
    122 priority
    123 process
    124 program
    125 properties
    126 regeneration
    127 regulation
    128 regulation of networks
    129 regulator
    130 reserves
    131 resistance
    132 shift
    133 significance
    134 somatic cells
    135 speciation
    136 stress
    137 survival
    138 system
    139 tissue
    140 transformation
    141 type of tissue
    142 types
    143 unicellularity
    144 versatility
    145 whole genome duplication
    146 whole organism
    147 whole transcriptome data
    148 schema:name Whole-Genome Duplications in Evolution, Ontogeny, and Pathology: Complexity and Emergency Reserves
    149 schema:pagination 813-827
    150 schema:productId Nc13c78fc85354d9485eba0aacd27a36f
    151 Nd99d3c52f93c40e999799958621a2bf5
    152 schema:sameAs https://app.dimensions.ai/details/publication/pub.1143980395
    153 https://doi.org/10.1134/s0026893321050022
    154 schema:sdDatePublished 2022-05-20T07:38
    155 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    156 schema:sdPublisher N1b167614adfa450d828de3abe1a2c4e0
    157 schema:url https://doi.org/10.1134/s0026893321050022
    158 sgo:license sg:explorer/license/
    159 sgo:sdDataset articles
    160 rdf:type schema:ScholarlyArticle
    161 N0cb9f170eced499ab90f3dfd367285f9 schema:volumeNumber 55
    162 rdf:type schema:PublicationVolume
    163 N1b167614adfa450d828de3abe1a2c4e0 schema:name Springer Nature - SN SciGraph project
    164 rdf:type schema:Organization
    165 N262935ca0bf4428eb19d385578f13098 rdf:first sg:person.0605460146.03
    166 rdf:rest rdf:nil
    167 Nc13c78fc85354d9485eba0aacd27a36f schema:name doi
    168 schema:value 10.1134/s0026893321050022
    169 rdf:type schema:PropertyValue
    170 Nd99d3c52f93c40e999799958621a2bf5 schema:name dimensions_id
    171 schema:value pub.1143980395
    172 rdf:type schema:PropertyValue
    173 Nf48ee92ec5584a30996285a775f7a841 schema:issueNumber 6
    174 rdf:type schema:PublicationIssue
    175 Nf71ebf30336d4b7299fa455dc18610cb rdf:first sg:person.01027537432.20
    176 rdf:rest N262935ca0bf4428eb19d385578f13098
    177 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    178 schema:name Biological Sciences
    179 rdf:type schema:DefinedTerm
    180 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
    181 schema:name Biochemistry and Cell Biology
    182 rdf:type schema:DefinedTerm
    183 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    184 schema:name Genetics
    185 rdf:type schema:DefinedTerm
    186 sg:journal.1371988 schema:issn 0026-8933
    187 1608-3245
    188 schema:name Molecular Biology
    189 schema:publisher Pleiades Publishing
    190 rdf:type schema:Periodical
    191 sg:person.01027537432.20 schema:affiliation grid-institutes:grid.418947.7
    192 schema:familyName Anatskaya
    193 schema:givenName O. V.
    194 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01027537432.20
    195 rdf:type schema:Person
    196 sg:person.0605460146.03 schema:affiliation grid-institutes:grid.418947.7
    197 schema:familyName Vinogradov
    198 schema:givenName A. E.
    199 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0605460146.03
    200 rdf:type schema:Person
    201 sg:pub.10.1007/978-3-642-86659-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006433795
    202 https://doi.org/10.1007/978-3-642-86659-3
    203 rdf:type schema:CreativeWork
    204 sg:pub.10.1007/bf00127249 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014541850
    205 https://doi.org/10.1007/bf00127249
    206 rdf:type schema:CreativeWork
    207 sg:pub.10.1007/bf00190566 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014373339
    208 https://doi.org/10.1007/bf00190566
    209 rdf:type schema:CreativeWork
    210 sg:pub.10.1007/s00239-008-9185-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050930140
    211 https://doi.org/10.1007/s00239-008-9185-2
    212 rdf:type schema:CreativeWork
    213 sg:pub.10.1007/s00412-004-0323-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004430682
    214 https://doi.org/10.1007/s00412-004-0323-3
    215 rdf:type schema:CreativeWork
    216 sg:pub.10.1007/s00438-017-1313-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084517837
    217 https://doi.org/10.1007/s00438-017-1313-5
    218 rdf:type schema:CreativeWork
    219 sg:pub.10.1007/s10142-010-0180-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052675282
    220 https://doi.org/10.1007/s10142-010-0180-5
    221 rdf:type schema:CreativeWork
    222 sg:pub.10.1038/cddis.2014.464 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015071629
    223 https://doi.org/10.1038/cddis.2014.464
    224 rdf:type schema:CreativeWork
    225 sg:pub.10.1038/ncomms6288 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022099256
    226 https://doi.org/10.1038/ncomms6288
    227 rdf:type schema:CreativeWork
    228 sg:pub.10.1038/ng.3813 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084129152
    229 https://doi.org/10.1038/ng.3813
    230 rdf:type schema:CreativeWork
    231 sg:pub.10.1038/ng.3929 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091083452
    232 https://doi.org/10.1038/ng.3929
    233 rdf:type schema:CreativeWork
    234 sg:pub.10.1038/nmicrobiol.2016.261 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074212500
    235 https://doi.org/10.1038/nmicrobiol.2016.261
    236 rdf:type schema:CreativeWork
    237 sg:pub.10.1038/nplants.2016.115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032757438
    238 https://doi.org/10.1038/nplants.2016.115
    239 rdf:type schema:CreativeWork
    240 sg:pub.10.1038/nrg.2017.26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085409542
    241 https://doi.org/10.1038/nrg.2017.26
    242 rdf:type schema:CreativeWork
    243 sg:pub.10.1038/nrg1711 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022197221
    244 https://doi.org/10.1038/nrg1711
    245 rdf:type schema:CreativeWork
    246 sg:pub.10.1038/nrg2482 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010022626
    247 https://doi.org/10.1038/nrg2482
    248 rdf:type schema:CreativeWork
    249 sg:pub.10.1038/onc.2008.358 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021627237
    250 https://doi.org/10.1038/onc.2008.358
    251 rdf:type schema:CreativeWork
    252 sg:pub.10.1038/onc.2010.310 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042424693
    253 https://doi.org/10.1038/onc.2010.310
    254 rdf:type schema:CreativeWork
    255 sg:pub.10.1038/onc.2013.96 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051752409
    256 https://doi.org/10.1038/onc.2013.96
    257 rdf:type schema:CreativeWork
    258 sg:pub.10.1038/onc.2017.72 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085051794
    259 https://doi.org/10.1038/onc.2017.72
    260 rdf:type schema:CreativeWork
    261 sg:pub.10.1038/s41467-021-20916-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1134928566
    262 https://doi.org/10.1038/s41467-021-20916-y
    263 rdf:type schema:CreativeWork
    264 sg:pub.10.1038/s41477-018-0136-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103640986
    265 https://doi.org/10.1038/s41477-018-0136-7
    266 rdf:type schema:CreativeWork
    267 sg:pub.10.1038/s41559-018-0787-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111763285
    268 https://doi.org/10.1038/s41559-018-0787-9
    269 rdf:type schema:CreativeWork
    270 sg:pub.10.1038/s41559-020-1166-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1125979719
    271 https://doi.org/10.1038/s41559-020-1166-x
    272 rdf:type schema:CreativeWork
    273 sg:pub.10.1038/s41575-020-0284-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1126052988
    274 https://doi.org/10.1038/s41575-020-0284-x
    275 rdf:type schema:CreativeWork
    276 sg:pub.10.1038/s41586-019-1689-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1122019643
    277 https://doi.org/10.1038/s41586-019-1689-y
    278 rdf:type schema:CreativeWork
    279 sg:pub.10.1038/s42003-019-0453-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1117132032
    280 https://doi.org/10.1038/s42003-019-0453-z
    281 rdf:type schema:CreativeWork
    282 sg:pub.10.1038/srep26061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034424564
    283 https://doi.org/10.1038/srep26061
    284 rdf:type schema:CreativeWork
    285 sg:pub.10.1038/srep40139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017526579
    286 https://doi.org/10.1038/srep40139
    287 rdf:type schema:CreativeWork
    288 sg:pub.10.1111/j.1601-5223.1991.tb00331.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1044867149
    289 https://doi.org/10.1111/j.1601-5223.1991.tb00331.x
    290 rdf:type schema:CreativeWork
    291 sg:pub.10.1134/s0006350918060064 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112435562
    292 https://doi.org/10.1134/s0006350918060064
    293 rdf:type schema:CreativeWork
    294 sg:pub.10.1134/s0006350920020049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1128770416
    295 https://doi.org/10.1134/s0006350920020049
    296 rdf:type schema:CreativeWork
    297 sg:pub.10.1134/s0022093013050071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032815680
    298 https://doi.org/10.1134/s0022093013050071
    299 rdf:type schema:CreativeWork
    300 sg:pub.10.1134/s1990519x12050021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024319852
    301 https://doi.org/10.1134/s1990519x12050021
    302 rdf:type schema:CreativeWork
    303 sg:pub.10.1186/1471-2164-13-615 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032309961
    304 https://doi.org/10.1186/1471-2164-13-615
    305 rdf:type schema:CreativeWork
    306 sg:pub.10.1186/s12885-018-4781-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1106678945
    307 https://doi.org/10.1186/s12885-018-4781-z
    308 rdf:type schema:CreativeWork
    309 sg:pub.10.1186/s12920-020-0699-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1125973556
    310 https://doi.org/10.1186/s12920-020-0699-9
    311 rdf:type schema:CreativeWork
    312 sg:pub.10.1186/s13059-017-1241-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1086032661
    313 https://doi.org/10.1186/s13059-017-1241-z
    314 rdf:type schema:CreativeWork
    315 sg:pub.10.1186/s13619-020-00068-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1135821281
    316 https://doi.org/10.1186/s13619-020-00068-y
    317 rdf:type schema:CreativeWork
    318 grid-institutes:grid.418947.7 schema:alternateName Institute of Cytology, Russian Academy of Sciences, 194064, St. Petersburg, Russia
    319 schema:name Institute of Cytology, Russian Academy of Sciences, 194064, St. Petersburg, Russia
    320 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...