Functionally Significant Amino Acid Motifs of Heat Shock Proteins: Structural and Bioinformatics Analyses of Hsp60/Hsp10 in Five Classes of Chordata View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-09

AUTHORS

T. S. Tikhomirova, O. V. Galzitskaya

ABSTRACT

The Hsp60/Hsp10 chaperonin system is one of the most studied systems of cell emergency responses to stresses associated with changes in environmental conditions. In this regard, we have performed a bioinformatics analysis of 164 amino acid sequences of Hsp60 and 125 amino acid sequences of Hsp10 in five classes of chordata. This enabled uncovering the relationship between the identity of the amino acid composition of Hsp60/Hsp10 and the evolutionary distance between classes of chordata. In the course of the study of the chaperonin crystal structure, potentially significant amino acid motifs responsible for the oligomerization of Hsp60 and Hsp10 monomers and the association/dissociation of the Hsp60 and Hsp10 hetero-dimer have been identified. In addition, we have established that Hsp60 and Hsp10 can form amyloid fibrils due to structural features through the alternative using of the oligomerization sites of monomers as well as association/dissociation sites. More... »

PAGES

761-778

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0026893318050138

DOI

http://dx.doi.org/10.1134/s0026893318050138

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107708536


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute for Biological Instrumentation", 
          "id": "https://www.grid.ac/institutes/grid.418623.a", 
          "name": [
            "Institute of Protein Research, Russian Academy of Sciences, 142290, Pushchino, Moscow oblast, Russia", 
            "Institute for Biological Instrumentation, Russian Academy of Sciences, 142290, Pushchino, Moscow oblast, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tikhomirova", 
        "givenName": "T. S.", 
        "id": "sg:person.012401126374.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012401126374.79"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Protein Research", 
          "id": "https://www.grid.ac/institutes/grid.418952.3", 
          "name": [
            "Institute of Protein Research, Russian Academy of Sciences, 142290, Pushchino, Moscow oblast, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Galzitskaya", 
        "givenName": "O. V.", 
        "id": "sg:person.01107226202.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01107226202.30"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11064-015-1816-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002757014", 
          "https://doi.org/10.1007/s11064-015-1816-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tibs.2015.07.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003349317"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btl504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004310311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/atvbaha.110.217877", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004598306"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/atvbaha.110.217877", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004598306"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1478-3975/8/3/035004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005416932"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/mbio.01206-14", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005965586"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.gene.2016.06.061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006272626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jaut.1999.0351", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006331369"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.febslet.2012.03.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006419105"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1742-4658.2012.08594.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006457252"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep31041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006648321", 
          "https://doi.org/10.1038/srep31041"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-9-51", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007459976", 
          "https://doi.org/10.1186/1471-2105-9-51"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-9-51", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007459976", 
          "https://doi.org/10.1186/1471-2105-9-51"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1411718112", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007510260"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0605504103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008266007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/371614a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008432057", 
          "https://doi.org/10.1038/371614a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12539-016-0170-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011316556", 
          "https://doi.org/10.1007/s12539-016-0170-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12539-016-0170-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011316556", 
          "https://doi.org/10.1007/s12539-016-0170-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10495-015-1187-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012425185", 
          "https://doi.org/10.1007/s10495-015-1187-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/molbev/msw054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012564990"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1990750815030099", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012565903", 
          "https://doi.org/10.1134/s1990750815030099"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/jbc.m802541200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014759714"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nchembio.131", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018732050", 
          "https://doi.org/10.1038/nchembio.131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.str.32.2.385", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019253934"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pmic.200300771", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019293878"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chemosphere.2010.01.054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020829069"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/07391102.2012.718529", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021332052"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.abb.2015.09.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021791110"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/excr.1996.0003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022021074"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.97.21.11348", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022163552"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bbagen.2016.07.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022995530"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/cmi.12647", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023834335"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nsb0296-170", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024700733", 
          "https://doi.org/10.1038/nsb0296-170"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.0020177", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025162816"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkv332", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026513014"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.atherosclerosis.2006.09.028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027850213"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-2052.2003.00990.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028018420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00018-010-0534-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030695796", 
          "https://doi.org/10.1007/s00018-010-0534-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-62703-646-7_6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030771317", 
          "https://doi.org/10.1007/978-1-62703-646-7_6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00196521", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031118530", 
          "https://doi.org/10.1007/bf00196521"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.atv.12.7.789", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034380783"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0006297913130038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034946311", 
          "https://doi.org/10.1134/s0006297913130038"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.carpath.2011.09.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034975303"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12011-015-0462-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035867325", 
          "https://doi.org/10.1007/s12011-015-0462-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.atv.0000071701.62486.49", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035885381"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.atv.0000071701.62486.49", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035885381"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/mcp.m114.043083", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035979527"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-4889(02)00264-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038743230"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btp691", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039539739"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.marenvres.2016.05.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040189683"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1110/ps.9.3.476", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043865333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1110/ps.9.3.476", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043865333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1242/jcs.02292", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044728944"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.cir.0000131513.33892.5b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046068096"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrcardio.2014.91", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047840127", 
          "https://doi.org/10.1038/nrcardio.2014.91"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cbpa.2016.06.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049531092"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1462-5822.2003.00352.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049710990"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0026893306020166", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049757227", 
          "https://doi.org/10.1134/s0026893306020166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0006-291x(90)90344-m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050414018"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rsob.140125", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051763471"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3109/00313025.2010.493866", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052105596"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3109/00313025.2010.493866", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052105596"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/jbc.270.51.30268", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052586586"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/jbc.m116.723049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058214832"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/8.3.275", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059414153"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1191/0961203305lu2212oa", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064154708"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1191/0961203305lu2212oa", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064154708"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1191/0961203305lu2212oa", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064154708"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2174/1381612822666160518141437", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069170972"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2174/1568026616666160413141350", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069195501"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4161/pri.2.3.7488", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072307063"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4238/2014.november.11.3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072392847"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074734533", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1078213405", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-09", 
    "datePublishedReg": "2018-09-01", 
    "description": "The Hsp60/Hsp10 chaperonin system is one of the most studied systems of cell emergency responses to stresses associated with changes in environmental conditions. In this regard, we have performed a bioinformatics analysis of 164 amino acid sequences of Hsp60 and 125 amino acid sequences of Hsp10 in five classes of chordata. This enabled uncovering the relationship between the identity of the amino acid composition of Hsp60/Hsp10 and the evolutionary distance between classes of chordata. In the course of the study of the chaperonin crystal structure, potentially significant amino acid motifs responsible for the oligomerization of Hsp60 and Hsp10 monomers and the association/dissociation of the Hsp60 and Hsp10 hetero-dimer have been identified. In addition, we have established that Hsp60 and Hsp10 can form amyloid fibrils due to structural features through the alternative using of the oligomerization sites of monomers as well as association/dissociation sites.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s0026893318050138", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1356887", 
        "issn": [
          "0026-8933", 
          "1608-3245"
        ], 
        "name": "Molecular Biology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "52"
      }
    ], 
    "name": "Functionally Significant Amino Acid Motifs of Heat Shock Proteins: Structural and Bioinformatics Analyses of Hsp60/Hsp10 in Five Classes of Chordata", 
    "pagination": "761-778", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b52e973e731ea5a0ba72cc32ac71ddd44780348310076077005d8fadaa796c0a"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0026893318050138"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107708536"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0026893318050138", 
      "https://app.dimensions.ai/details/publication/pub.1107708536"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T16:56", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000609.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1134%2FS0026893318050138"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0026893318050138'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0026893318050138'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0026893318050138'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0026893318050138'


 

This table displays all metadata directly associated to this object as RDF triples.

287 TRIPLES      21 PREDICATES      94 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0026893318050138 schema:about anzsrc-for:06
2 anzsrc-for:0604
3 schema:author N4bf79d4442d24782b3dd0b08c0123e54
4 schema:citation sg:pub.10.1007/978-1-62703-646-7_6
5 sg:pub.10.1007/bf00196521
6 sg:pub.10.1007/s00018-010-0534-0
7 sg:pub.10.1007/s10495-015-1187-0
8 sg:pub.10.1007/s11064-015-1816-6
9 sg:pub.10.1007/s12011-015-0462-9
10 sg:pub.10.1007/s12539-016-0170-y
11 sg:pub.10.1038/371614a0
12 sg:pub.10.1038/nchembio.131
13 sg:pub.10.1038/nrcardio.2014.91
14 sg:pub.10.1038/nsb0296-170
15 sg:pub.10.1038/srep31041
16 sg:pub.10.1134/s0006297913130038
17 sg:pub.10.1134/s0026893306020166
18 sg:pub.10.1134/s1990750815030099
19 sg:pub.10.1186/1471-2105-9-51
20 https://app.dimensions.ai/details/publication/pub.1074734533
21 https://app.dimensions.ai/details/publication/pub.1078213405
22 https://doi.org/10.1002/pmic.200300771
23 https://doi.org/10.1006/excr.1996.0003
24 https://doi.org/10.1006/jaut.1999.0351
25 https://doi.org/10.1016/0006-291x(90)90344-m
26 https://doi.org/10.1016/j.abb.2015.09.022
27 https://doi.org/10.1016/j.atherosclerosis.2006.09.028
28 https://doi.org/10.1016/j.bbagen.2016.07.019
29 https://doi.org/10.1016/j.carpath.2011.09.011
30 https://doi.org/10.1016/j.cbpa.2016.06.022
31 https://doi.org/10.1016/j.chemosphere.2010.01.054
32 https://doi.org/10.1016/j.febslet.2012.03.019
33 https://doi.org/10.1016/j.gene.2016.06.061
34 https://doi.org/10.1016/j.marenvres.2016.05.007
35 https://doi.org/10.1016/j.tibs.2015.07.009
36 https://doi.org/10.1016/s0167-4889(02)00264-1
37 https://doi.org/10.1046/j.1365-2052.2003.00990.x
38 https://doi.org/10.1046/j.1462-5822.2003.00352.x
39 https://doi.org/10.1073/pnas.0605504103
40 https://doi.org/10.1073/pnas.1411718112
41 https://doi.org/10.1073/pnas.97.21.11348
42 https://doi.org/10.1074/jbc.270.51.30268
43 https://doi.org/10.1074/jbc.m116.723049
44 https://doi.org/10.1074/jbc.m802541200
45 https://doi.org/10.1074/mcp.m114.043083
46 https://doi.org/10.1080/07391102.2012.718529
47 https://doi.org/10.1088/1478-3975/8/3/035004
48 https://doi.org/10.1093/bioinformatics/8.3.275
49 https://doi.org/10.1093/bioinformatics/btl504
50 https://doi.org/10.1093/bioinformatics/btp691
51 https://doi.org/10.1093/molbev/msw054
52 https://doi.org/10.1093/nar/gkv332
53 https://doi.org/10.1098/rsob.140125
54 https://doi.org/10.1110/ps.9.3.476
55 https://doi.org/10.1111/cmi.12647
56 https://doi.org/10.1111/j.1742-4658.2012.08594.x
57 https://doi.org/10.1128/mbio.01206-14
58 https://doi.org/10.1161/01.atv.0000071701.62486.49
59 https://doi.org/10.1161/01.atv.12.7.789
60 https://doi.org/10.1161/01.cir.0000131513.33892.5b
61 https://doi.org/10.1161/01.str.32.2.385
62 https://doi.org/10.1161/atvbaha.110.217877
63 https://doi.org/10.1191/0961203305lu2212oa
64 https://doi.org/10.1242/jcs.02292
65 https://doi.org/10.1371/journal.pcbi.0020177
66 https://doi.org/10.2174/1381612822666160518141437
67 https://doi.org/10.2174/1568026616666160413141350
68 https://doi.org/10.3109/00313025.2010.493866
69 https://doi.org/10.4161/pri.2.3.7488
70 https://doi.org/10.4238/2014.november.11.3
71 schema:datePublished 2018-09
72 schema:datePublishedReg 2018-09-01
73 schema:description The Hsp60/Hsp10 chaperonin system is one of the most studied systems of cell emergency responses to stresses associated with changes in environmental conditions. In this regard, we have performed a bioinformatics analysis of 164 amino acid sequences of Hsp60 and 125 amino acid sequences of Hsp10 in five classes of chordata. This enabled uncovering the relationship between the identity of the amino acid composition of Hsp60/Hsp10 and the evolutionary distance between classes of chordata. In the course of the study of the chaperonin crystal structure, potentially significant amino acid motifs responsible for the oligomerization of Hsp60 and Hsp10 monomers and the association/dissociation of the Hsp60 and Hsp10 hetero-dimer have been identified. In addition, we have established that Hsp60 and Hsp10 can form amyloid fibrils due to structural features through the alternative using of the oligomerization sites of monomers as well as association/dissociation sites.
74 schema:genre research_article
75 schema:inLanguage en
76 schema:isAccessibleForFree false
77 schema:isPartOf N0087ee5c53484ee0957878b7d99bc133
78 Ncf0a3d0c715a48a2accd94fac72eeeb2
79 sg:journal.1356887
80 schema:name Functionally Significant Amino Acid Motifs of Heat Shock Proteins: Structural and Bioinformatics Analyses of Hsp60/Hsp10 in Five Classes of Chordata
81 schema:pagination 761-778
82 schema:productId N028932afa7a54a39b55c827b500a2111
83 N07fb0f70de384b8e82be45d159a2f555
84 N20a44345770c474e83017954f73f3376
85 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107708536
86 https://doi.org/10.1134/s0026893318050138
87 schema:sdDatePublished 2019-04-10T16:56
88 schema:sdLicense https://scigraph.springernature.com/explorer/license/
89 schema:sdPublisher Nf63e5e3a352d4004866ef5a2b1a088f8
90 schema:url https://link.springer.com/10.1134%2FS0026893318050138
91 sgo:license sg:explorer/license/
92 sgo:sdDataset articles
93 rdf:type schema:ScholarlyArticle
94 N0087ee5c53484ee0957878b7d99bc133 schema:volumeNumber 52
95 rdf:type schema:PublicationVolume
96 N028932afa7a54a39b55c827b500a2111 schema:name doi
97 schema:value 10.1134/s0026893318050138
98 rdf:type schema:PropertyValue
99 N07fb0f70de384b8e82be45d159a2f555 schema:name dimensions_id
100 schema:value pub.1107708536
101 rdf:type schema:PropertyValue
102 N20a44345770c474e83017954f73f3376 schema:name readcube_id
103 schema:value b52e973e731ea5a0ba72cc32ac71ddd44780348310076077005d8fadaa796c0a
104 rdf:type schema:PropertyValue
105 N4bf79d4442d24782b3dd0b08c0123e54 rdf:first sg:person.012401126374.79
106 rdf:rest N586ad91cdb654758947cf8c9e1c26754
107 N586ad91cdb654758947cf8c9e1c26754 rdf:first sg:person.01107226202.30
108 rdf:rest rdf:nil
109 Ncf0a3d0c715a48a2accd94fac72eeeb2 schema:issueNumber 5
110 rdf:type schema:PublicationIssue
111 Nf63e5e3a352d4004866ef5a2b1a088f8 schema:name Springer Nature - SN SciGraph project
112 rdf:type schema:Organization
113 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
114 schema:name Biological Sciences
115 rdf:type schema:DefinedTerm
116 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
117 schema:name Genetics
118 rdf:type schema:DefinedTerm
119 sg:journal.1356887 schema:issn 0026-8933
120 1608-3245
121 schema:name Molecular Biology
122 rdf:type schema:Periodical
123 sg:person.01107226202.30 schema:affiliation https://www.grid.ac/institutes/grid.418952.3
124 schema:familyName Galzitskaya
125 schema:givenName O. V.
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01107226202.30
127 rdf:type schema:Person
128 sg:person.012401126374.79 schema:affiliation https://www.grid.ac/institutes/grid.418623.a
129 schema:familyName Tikhomirova
130 schema:givenName T. S.
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012401126374.79
132 rdf:type schema:Person
133 sg:pub.10.1007/978-1-62703-646-7_6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030771317
134 https://doi.org/10.1007/978-1-62703-646-7_6
135 rdf:type schema:CreativeWork
136 sg:pub.10.1007/bf00196521 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031118530
137 https://doi.org/10.1007/bf00196521
138 rdf:type schema:CreativeWork
139 sg:pub.10.1007/s00018-010-0534-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030695796
140 https://doi.org/10.1007/s00018-010-0534-0
141 rdf:type schema:CreativeWork
142 sg:pub.10.1007/s10495-015-1187-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012425185
143 https://doi.org/10.1007/s10495-015-1187-0
144 rdf:type schema:CreativeWork
145 sg:pub.10.1007/s11064-015-1816-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002757014
146 https://doi.org/10.1007/s11064-015-1816-6
147 rdf:type schema:CreativeWork
148 sg:pub.10.1007/s12011-015-0462-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035867325
149 https://doi.org/10.1007/s12011-015-0462-9
150 rdf:type schema:CreativeWork
151 sg:pub.10.1007/s12539-016-0170-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1011316556
152 https://doi.org/10.1007/s12539-016-0170-y
153 rdf:type schema:CreativeWork
154 sg:pub.10.1038/371614a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008432057
155 https://doi.org/10.1038/371614a0
156 rdf:type schema:CreativeWork
157 sg:pub.10.1038/nchembio.131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018732050
158 https://doi.org/10.1038/nchembio.131
159 rdf:type schema:CreativeWork
160 sg:pub.10.1038/nrcardio.2014.91 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047840127
161 https://doi.org/10.1038/nrcardio.2014.91
162 rdf:type schema:CreativeWork
163 sg:pub.10.1038/nsb0296-170 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024700733
164 https://doi.org/10.1038/nsb0296-170
165 rdf:type schema:CreativeWork
166 sg:pub.10.1038/srep31041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006648321
167 https://doi.org/10.1038/srep31041
168 rdf:type schema:CreativeWork
169 sg:pub.10.1134/s0006297913130038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034946311
170 https://doi.org/10.1134/s0006297913130038
171 rdf:type schema:CreativeWork
172 sg:pub.10.1134/s0026893306020166 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049757227
173 https://doi.org/10.1134/s0026893306020166
174 rdf:type schema:CreativeWork
175 sg:pub.10.1134/s1990750815030099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012565903
176 https://doi.org/10.1134/s1990750815030099
177 rdf:type schema:CreativeWork
178 sg:pub.10.1186/1471-2105-9-51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007459976
179 https://doi.org/10.1186/1471-2105-9-51
180 rdf:type schema:CreativeWork
181 https://app.dimensions.ai/details/publication/pub.1074734533 schema:CreativeWork
182 https://app.dimensions.ai/details/publication/pub.1078213405 schema:CreativeWork
183 https://doi.org/10.1002/pmic.200300771 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019293878
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1006/excr.1996.0003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022021074
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1006/jaut.1999.0351 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006331369
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1016/0006-291x(90)90344-m schema:sameAs https://app.dimensions.ai/details/publication/pub.1050414018
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1016/j.abb.2015.09.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021791110
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1016/j.atherosclerosis.2006.09.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027850213
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1016/j.bbagen.2016.07.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022995530
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1016/j.carpath.2011.09.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034975303
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1016/j.cbpa.2016.06.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049531092
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1016/j.chemosphere.2010.01.054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020829069
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1016/j.febslet.2012.03.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006419105
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1016/j.gene.2016.06.061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006272626
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1016/j.marenvres.2016.05.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040189683
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1016/j.tibs.2015.07.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003349317
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1016/s0167-4889(02)00264-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038743230
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1046/j.1365-2052.2003.00990.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1028018420
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1046/j.1462-5822.2003.00352.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1049710990
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1073/pnas.0605504103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008266007
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1073/pnas.1411718112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007510260
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1073/pnas.97.21.11348 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022163552
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1074/jbc.270.51.30268 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052586586
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1074/jbc.m116.723049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058214832
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1074/jbc.m802541200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014759714
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1074/mcp.m114.043083 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035979527
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1080/07391102.2012.718529 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021332052
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1088/1478-3975/8/3/035004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005416932
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1093/bioinformatics/8.3.275 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059414153
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1093/bioinformatics/btl504 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004310311
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1093/bioinformatics/btp691 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039539739
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1093/molbev/msw054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012564990
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1093/nar/gkv332 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026513014
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1098/rsob.140125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051763471
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1110/ps.9.3.476 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043865333
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1111/cmi.12647 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023834335
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1111/j.1742-4658.2012.08594.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1006457252
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1128/mbio.01206-14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005965586
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1161/01.atv.0000071701.62486.49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035885381
256 rdf:type schema:CreativeWork
257 https://doi.org/10.1161/01.atv.12.7.789 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034380783
258 rdf:type schema:CreativeWork
259 https://doi.org/10.1161/01.cir.0000131513.33892.5b schema:sameAs https://app.dimensions.ai/details/publication/pub.1046068096
260 rdf:type schema:CreativeWork
261 https://doi.org/10.1161/01.str.32.2.385 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019253934
262 rdf:type schema:CreativeWork
263 https://doi.org/10.1161/atvbaha.110.217877 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004598306
264 rdf:type schema:CreativeWork
265 https://doi.org/10.1191/0961203305lu2212oa schema:sameAs https://app.dimensions.ai/details/publication/pub.1064154708
266 rdf:type schema:CreativeWork
267 https://doi.org/10.1242/jcs.02292 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044728944
268 rdf:type schema:CreativeWork
269 https://doi.org/10.1371/journal.pcbi.0020177 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025162816
270 rdf:type schema:CreativeWork
271 https://doi.org/10.2174/1381612822666160518141437 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069170972
272 rdf:type schema:CreativeWork
273 https://doi.org/10.2174/1568026616666160413141350 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069195501
274 rdf:type schema:CreativeWork
275 https://doi.org/10.3109/00313025.2010.493866 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052105596
276 rdf:type schema:CreativeWork
277 https://doi.org/10.4161/pri.2.3.7488 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072307063
278 rdf:type schema:CreativeWork
279 https://doi.org/10.4238/2014.november.11.3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072392847
280 rdf:type schema:CreativeWork
281 https://www.grid.ac/institutes/grid.418623.a schema:alternateName Institute for Biological Instrumentation
282 schema:name Institute for Biological Instrumentation, Russian Academy of Sciences, 142290, Pushchino, Moscow oblast, Russia
283 Institute of Protein Research, Russian Academy of Sciences, 142290, Pushchino, Moscow oblast, Russia
284 rdf:type schema:Organization
285 https://www.grid.ac/institutes/grid.418952.3 schema:alternateName Institute of Protein Research
286 schema:name Institute of Protein Research, Russian Academy of Sciences, 142290, Pushchino, Moscow oblast, Russia
287 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...