Classification of triplet periodicity in the DNA sequences of genes from KEGG databank View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2008-08

AUTHORS

F. E. Frenkel, E. V. Korotkov

ABSTRACT

Totally, 472 288 regions of triplet periodicity were found in 578 868 genes from KEGG databank version 29 and classified. A new concept of triplet periodicity class and a measure of similarity between periodicity classes were introduced. Overall, 2520 classes were created and contained 94% of the triplet periodicity cases found. A similar correlation between the triplet periodicity and reading frame was observed for 92% of triplet periodicity regions contained in different classes. The remaining triplet periodicity regions displayed a shift of the reading frame relative to that common for the majority of genes belonging to the same triplet periodicity class. The hypothetical amino acid sequences were deduced from the periodicity regions according to the reading frame characteristic of the given triplet periodicity class. BLAST analysis demonstrated that 2660 hypothetical amino acid sequences display a statistically significant similarity to proteins from the Uni-Prot databank. It was supposed that 8% of the triplet periodicity regions contained in the classes have frameshift mutations. The triplet periodicity classes can be used to identify the coding regions in genes and to searching for frameshift mutations. More... »

PAGES

629

References to SciGraph publications

Journal

TITLE

Molecular Biology

ISSUE

4

VOLUME

42

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0026893308040201

DOI

http://dx.doi.org/10.1134/s0026893308040201

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1007166141


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Bioengineering Center", 
          "id": "https://www.grid.ac/institutes/grid.482762.d", 
          "name": [
            "Bioengineering Center, Russian Academy of Sciences, 117312, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Frenkel", 
        "givenName": "F. E.", 
        "id": "sg:person.01226035723.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01226035723.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Bioengineering Center", 
          "id": "https://www.grid.ac/institutes/grid.482762.d", 
          "name": [
            "Bioengineering Center, Russian Academy of Sciences, 117312, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Korotkov", 
        "givenName": "E. V.", 
        "id": "sg:person.01274151123.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01274151123.51"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.jtbi.2007.03.038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000749828"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/pl00006532", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003241934", 
          "https://doi.org/10.1007/pl00006532"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0375-9601(03)00641-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004343633"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0375-9601(03)00641-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004343633"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bti1000", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008824422"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jtbi.1994.1080", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010445256"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/13.3.263", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011884358"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01047323", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016433256", 
          "https://doi.org/10.1007/bf01047323"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1285", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018946050", 
          "https://doi.org/10.1038/ng1285"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1285", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018946050", 
          "https://doi.org/10.1038/ng1285"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0076-6879(96)66015-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020468542"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.104.034884", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021274061"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.104.034884", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021274061"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bib/5.2.118", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023213889"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-2836(87)90241-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023475043"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1749-6632.1999.tb08894.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030108379"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1749-6632.1999.tb08894.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030108379"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.89.24.12165", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031671369"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/0471223921.ch10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034183814"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0097-8485(96)80012-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037253036"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2199-5-12", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038059920", 
          "https://doi.org/10.1186/1471-2199-5-12"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/dnares/6.3.153", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039190731"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9780470110607.ch10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044416316"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/18.1.196", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044557507"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-0-08-092596-7.50008-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045544761"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tig.2005.05.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047229003"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/21.3.607", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049338447"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/jbb.2005.139", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050796876"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0378-1119(84)90116-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051432348"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0378-1119(84)90116-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051432348"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1024231109360", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052064279", 
          "https://doi.org/10.1023/a:1024231109360"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/cmb.1997.4.127", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059245161"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/imammb/11.3.149", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059687833"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iembs.2007.4352556", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077516718"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1078608314", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082604388", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-08", 
    "datePublishedReg": "2008-08-01", 
    "description": "Totally, 472 288 regions of triplet periodicity were found in 578 868 genes from KEGG databank version 29 and classified. A new concept of triplet periodicity class and a measure of similarity between periodicity classes were introduced. Overall, 2520 classes were created and contained 94% of the triplet periodicity cases found. A similar correlation between the triplet periodicity and reading frame was observed for 92% of triplet periodicity regions contained in different classes. The remaining triplet periodicity regions displayed a shift of the reading frame relative to that common for the majority of genes belonging to the same triplet periodicity class. The hypothetical amino acid sequences were deduced from the periodicity regions according to the reading frame characteristic of the given triplet periodicity class. BLAST analysis demonstrated that 2660 hypothetical amino acid sequences display a statistically significant similarity to proteins from the Uni-Prot databank. It was supposed that 8% of the triplet periodicity regions contained in the classes have frameshift mutations. The triplet periodicity classes can be used to identify the coding regions in genes and to searching for frameshift mutations.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s0026893308040201", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1356887", 
        "issn": [
          "0026-8933", 
          "1608-3245"
        ], 
        "name": "Molecular Biology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "42"
      }
    ], 
    "name": "Classification of triplet periodicity in the DNA sequences of genes from KEGG databank", 
    "pagination": "629", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "22224fe0bf3bb299a7b20c923ea80fde5e779751423ea198bf3b982d29d06dcf"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0026893308040201"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1007166141"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0026893308040201", 
      "https://app.dimensions.ai/details/publication/pub.1007166141"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T23:29", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000536.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1134%2FS0026893308040201"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0026893308040201'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0026893308040201'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0026893308040201'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0026893308040201'


 

This table displays all metadata directly associated to this object as RDF triples.

164 TRIPLES      21 PREDICATES      58 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0026893308040201 schema:about anzsrc-for:06
2 anzsrc-for:0604
3 schema:author Nb2d02848573e4974a3c9e57234c6e5c6
4 schema:citation sg:pub.10.1007/bf01047323
5 sg:pub.10.1007/pl00006532
6 sg:pub.10.1023/a:1024231109360
7 sg:pub.10.1038/ng1285
8 sg:pub.10.1186/1471-2199-5-12
9 https://app.dimensions.ai/details/publication/pub.1078608314
10 https://app.dimensions.ai/details/publication/pub.1082604388
11 https://doi.org/10.1002/0471223921.ch10
12 https://doi.org/10.1002/9780470110607.ch10
13 https://doi.org/10.1006/jtbi.1994.1080
14 https://doi.org/10.1016/0022-2836(87)90241-5
15 https://doi.org/10.1016/0378-1119(84)90116-1
16 https://doi.org/10.1016/b978-0-08-092596-7.50008-3
17 https://doi.org/10.1016/j.jtbi.2007.03.038
18 https://doi.org/10.1016/j.tig.2005.05.013
19 https://doi.org/10.1016/s0076-6879(96)66015-7
20 https://doi.org/10.1016/s0097-8485(96)80012-x
21 https://doi.org/10.1016/s0375-9601(03)00641-8
22 https://doi.org/10.1073/pnas.89.24.12165
23 https://doi.org/10.1089/cmb.1997.4.127
24 https://doi.org/10.1093/bib/5.2.118
25 https://doi.org/10.1093/bioinformatics/13.3.263
26 https://doi.org/10.1093/bioinformatics/18.1.196
27 https://doi.org/10.1093/bioinformatics/bti1000
28 https://doi.org/10.1093/dnares/6.3.153
29 https://doi.org/10.1093/imammb/11.3.149
30 https://doi.org/10.1093/nar/21.3.607
31 https://doi.org/10.1109/iembs.2007.4352556
32 https://doi.org/10.1111/j.1749-6632.1999.tb08894.x
33 https://doi.org/10.1155/jbb.2005.139
34 https://doi.org/10.1534/genetics.104.034884
35 schema:datePublished 2008-08
36 schema:datePublishedReg 2008-08-01
37 schema:description Totally, 472 288 regions of triplet periodicity were found in 578 868 genes from KEGG databank version 29 and classified. A new concept of triplet periodicity class and a measure of similarity between periodicity classes were introduced. Overall, 2520 classes were created and contained 94% of the triplet periodicity cases found. A similar correlation between the triplet periodicity and reading frame was observed for 92% of triplet periodicity regions contained in different classes. The remaining triplet periodicity regions displayed a shift of the reading frame relative to that common for the majority of genes belonging to the same triplet periodicity class. The hypothetical amino acid sequences were deduced from the periodicity regions according to the reading frame characteristic of the given triplet periodicity class. BLAST analysis demonstrated that 2660 hypothetical amino acid sequences display a statistically significant similarity to proteins from the Uni-Prot databank. It was supposed that 8% of the triplet periodicity regions contained in the classes have frameshift mutations. The triplet periodicity classes can be used to identify the coding regions in genes and to searching for frameshift mutations.
38 schema:genre research_article
39 schema:inLanguage en
40 schema:isAccessibleForFree false
41 schema:isPartOf N48f9d638e4a2431ea956a2cad0baa7f0
42 N4a980f7f112e4e149a4815ab437a2262
43 sg:journal.1356887
44 schema:name Classification of triplet periodicity in the DNA sequences of genes from KEGG databank
45 schema:pagination 629
46 schema:productId N199c91712e7e4575953750d1d0d62ff0
47 N1aa393d7ec184c9ba6e6f1573fcc36ab
48 Ncb03c95f24494db1b69329eeee954f85
49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007166141
50 https://doi.org/10.1134/s0026893308040201
51 schema:sdDatePublished 2019-04-10T23:29
52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
53 schema:sdPublisher N92e18cc1761f42feb30e727e68be86f2
54 schema:url http://link.springer.com/10.1134%2FS0026893308040201
55 sgo:license sg:explorer/license/
56 sgo:sdDataset articles
57 rdf:type schema:ScholarlyArticle
58 N199c91712e7e4575953750d1d0d62ff0 schema:name readcube_id
59 schema:value 22224fe0bf3bb299a7b20c923ea80fde5e779751423ea198bf3b982d29d06dcf
60 rdf:type schema:PropertyValue
61 N1aa393d7ec184c9ba6e6f1573fcc36ab schema:name dimensions_id
62 schema:value pub.1007166141
63 rdf:type schema:PropertyValue
64 N48f9d638e4a2431ea956a2cad0baa7f0 schema:issueNumber 4
65 rdf:type schema:PublicationIssue
66 N4a980f7f112e4e149a4815ab437a2262 schema:volumeNumber 42
67 rdf:type schema:PublicationVolume
68 N4f549eb2ee5940a5b627ed5840b4bd7f rdf:first sg:person.01274151123.51
69 rdf:rest rdf:nil
70 N92e18cc1761f42feb30e727e68be86f2 schema:name Springer Nature - SN SciGraph project
71 rdf:type schema:Organization
72 Nb2d02848573e4974a3c9e57234c6e5c6 rdf:first sg:person.01226035723.61
73 rdf:rest N4f549eb2ee5940a5b627ed5840b4bd7f
74 Ncb03c95f24494db1b69329eeee954f85 schema:name doi
75 schema:value 10.1134/s0026893308040201
76 rdf:type schema:PropertyValue
77 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
78 schema:name Biological Sciences
79 rdf:type schema:DefinedTerm
80 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
81 schema:name Genetics
82 rdf:type schema:DefinedTerm
83 sg:journal.1356887 schema:issn 0026-8933
84 1608-3245
85 schema:name Molecular Biology
86 rdf:type schema:Periodical
87 sg:person.01226035723.61 schema:affiliation https://www.grid.ac/institutes/grid.482762.d
88 schema:familyName Frenkel
89 schema:givenName F. E.
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01226035723.61
91 rdf:type schema:Person
92 sg:person.01274151123.51 schema:affiliation https://www.grid.ac/institutes/grid.482762.d
93 schema:familyName Korotkov
94 schema:givenName E. V.
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01274151123.51
96 rdf:type schema:Person
97 sg:pub.10.1007/bf01047323 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016433256
98 https://doi.org/10.1007/bf01047323
99 rdf:type schema:CreativeWork
100 sg:pub.10.1007/pl00006532 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003241934
101 https://doi.org/10.1007/pl00006532
102 rdf:type schema:CreativeWork
103 sg:pub.10.1023/a:1024231109360 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052064279
104 https://doi.org/10.1023/a:1024231109360
105 rdf:type schema:CreativeWork
106 sg:pub.10.1038/ng1285 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018946050
107 https://doi.org/10.1038/ng1285
108 rdf:type schema:CreativeWork
109 sg:pub.10.1186/1471-2199-5-12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038059920
110 https://doi.org/10.1186/1471-2199-5-12
111 rdf:type schema:CreativeWork
112 https://app.dimensions.ai/details/publication/pub.1078608314 schema:CreativeWork
113 https://app.dimensions.ai/details/publication/pub.1082604388 schema:CreativeWork
114 https://doi.org/10.1002/0471223921.ch10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034183814
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1002/9780470110607.ch10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044416316
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1006/jtbi.1994.1080 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010445256
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/0022-2836(87)90241-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023475043
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/0378-1119(84)90116-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051432348
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/b978-0-08-092596-7.50008-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045544761
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/j.jtbi.2007.03.038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000749828
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/j.tig.2005.05.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047229003
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/s0076-6879(96)66015-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020468542
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/s0097-8485(96)80012-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1037253036
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/s0375-9601(03)00641-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004343633
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1073/pnas.89.24.12165 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031671369
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1089/cmb.1997.4.127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059245161
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1093/bib/5.2.118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023213889
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1093/bioinformatics/13.3.263 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011884358
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1093/bioinformatics/18.1.196 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044557507
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1093/bioinformatics/bti1000 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008824422
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1093/dnares/6.3.153 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039190731
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1093/imammb/11.3.149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059687833
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1093/nar/21.3.607 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049338447
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1109/iembs.2007.4352556 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077516718
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1111/j.1749-6632.1999.tb08894.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1030108379
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1155/jbb.2005.139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050796876
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1534/genetics.104.034884 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021274061
161 rdf:type schema:CreativeWork
162 https://www.grid.ac/institutes/grid.482762.d schema:alternateName Bioengineering Center
163 schema:name Bioengineering Center, Russian Academy of Sciences, 117312, Moscow, Russia
164 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...