Genome Analysis of Two Lichen Bacteriobionts, Lichenibacterium ramalinae and Lichenibacterium minor: Toxin‒Antitoxin Systems and Secretion Proteins View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2022-03-28

AUTHORS

T. A. Pankratov, P. A. Nikitin, E. O. Patutina

ABSTRACT

The genomes of two bacteriobionts of the fruticose lichen Ramalina pollinaria, Lichenibacterium ramalinae and L. minor, were analyzed. Genetic determinants potentially determining the integration and adaptation of these bacteria in the lichen thallus were identified. This is the first report on assessment of genetic determinants of the stress reaction factors and secretion systems of lichen bacteriobionts. The genes encoding the proteins of the VapCB toxin–antitoxin (TA) systems exhibited >60% homology with the genes of the known plant symbionts Bradyrhizobium, Sinorhizobium, Agrobacterium, Mesorhizobium, and Ralstonia, as well as with those of a human pathogen Bartonella. The genes encoding the proteins of type II secretion system were found in the genomes of both species. The genes encoding type IV secretion proteins were found only in the genome of L. ramalinae; they were homologous to those of epiphytic Methylobacterium, plant pathogens Agrobacterium, and plant root symbionts Rhizobium and Neorhizobium. Homology between the genes encoding TA system and secretion system proteins and the genes of plant-associated bacteria was over 60%. This may indicate that green algae are the main target for invasion. Detection of the urease synthesis genes in the genomes of lichen bacteriobionts suggested the hypothesis that urea decomposition results in an additional supply of ammonium and bicarbonate to the symbiosis. The latter may potentially be utilized by phototrophic eukaryotes and prokaryotes as an additional carbon source. Analysis of the genomes of lichen bacteriobionts L. ramalinae and L. minor revealed the possible differences in their survival strategies, with L. ramalinae more integrated into the symbiosis, while L. minor is characterized by more autonomous features. More... »

PAGES

160-172

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0026261722020096

DOI

http://dx.doi.org/10.1134/s0026261722020096

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1146629954


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0605", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Microbiology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0607", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Plant Biology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, 119071, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, 119071, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pankratov", 
        "givenName": "T. A.", 
        "id": "sg:person.016633033227.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016633033227.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Faculty of Bioengineering and Bioinformatics, Moscow State University, 119192, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.14476.30", 
          "name": [
            "Faculty of Bioengineering and Bioinformatics, Moscow State University, 119192, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nikitin", 
        "givenName": "P. A.", 
        "id": "sg:person.013510527250.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013510527250.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Skryabin Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, 119071, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Skryabin Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, 119071, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Patutina", 
        "givenName": "E. O.", 
        "id": "sg:person.01236000324.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01236000324.05"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00709-010-0156-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038704734", 
          "https://doi.org/10.1007/s00709-010-0156-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrmicro2762", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017691906", 
          "https://doi.org/10.1038/nrmicro2762"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ismej.2009.63", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024017935", 
          "https://doi.org/10.1038/ismej.2009.63"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10482-019-01357-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1122678543", 
          "https://doi.org/10.1007/s10482-019-01357-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13199-009-0049-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046613197", 
          "https://doi.org/10.1007/s13199-009-0049-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0026261717030134", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085728305", 
          "https://doi.org/10.1134/s0026261717030134"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2022-03-28", 
    "datePublishedReg": "2022-03-28", 
    "description": "The genomes of two bacteriobionts of the fruticose lichen Ramalina pollinaria, Lichenibacterium ramalinae and L. minor, were analyzed. Genetic determinants potentially determining the integration and adaptation of these bacteria in the lichen thallus were identified. This is the first report on assessment of genetic determinants of the stress reaction factors and secretion systems of lichen bacteriobionts. The genes encoding the proteins of the VapCB toxin\u2013antitoxin (TA) systems exhibited >60% homology with the genes of the known plant symbionts Bradyrhizobium, Sinorhizobium, Agrobacterium, Mesorhizobium, and Ralstonia, as well as with those of a human pathogen Bartonella. The genes encoding the proteins of type II secretion system were found in the genomes of both species. The genes encoding type IV secretion proteins were found only in the genome of L. ramalinae; they were homologous to those of epiphytic Methylobacterium, plant pathogens Agrobacterium, and plant root symbionts Rhizobium and Neorhizobium. Homology between the genes encoding TA system and secretion system proteins and the genes of plant-associated bacteria was over 60%. This may indicate that green algae are the main target for invasion. Detection of the urease synthesis genes in the genomes of lichen bacteriobionts suggested the hypothesis that urea decomposition results in an additional supply of ammonium and bicarbonate to the symbiosis. The latter may potentially be utilized by phototrophic eukaryotes and prokaryotes as an additional carbon source. Analysis of the genomes of lichen bacteriobionts L. ramalinae and L. minor revealed the possible differences in their survival strategies, with L.\u00a0ramalinae more integrated into the symbiosis, while L. minor is characterized by more autonomous features.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s0026261722020096", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1327383", 
        "issn": [
          "0026-3656", 
          "0026-2617"
        ], 
        "name": "Microbiology", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "91"
      }
    ], 
    "keywords": [
      "toxin-antitoxin systems", 
      "L. minor", 
      "secretion system", 
      "secretion proteins", 
      "type II secretion system", 
      "type IV secretion proteins", 
      "plant pathogen Agrobacterium", 
      "plant-associated bacteria", 
      "genetic determinants", 
      "secretion system proteins", 
      "phototrophic eukaryotes", 
      "green algae", 
      "genome analysis", 
      "synthesis genes", 
      "genome", 
      "system proteins", 
      "genes", 
      "TA systems", 
      "lichen thalli", 
      "protein", 
      "survival strategies", 
      "Agrobacterium", 
      "symbiosis", 
      "homology", 
      "carbon source", 
      "additional carbon source", 
      "bacteria", 
      "first report", 
      "Neorhizobium", 
      "eukaryotes", 
      "Sinorhizobium", 
      "Mesorhizobium", 
      "prokaryotes", 
      "pollinaria", 
      "Methylobacterium", 
      "Bradyrhizobium", 
      "rhizobia", 
      "algae", 
      "Ralstonia", 
      "thalli", 
      "species", 
      "Bartonella", 
      "main target", 
      "invasion", 
      "adaptation", 
      "Ramalina pollinaria", 
      "determinants", 
      "target", 
      "additional supply", 
      "ammonium", 
      "minors", 
      "hypothesis", 
      "analysis", 
      "possible differences", 
      "factors", 
      "system", 
      "supply", 
      "strategies", 
      "bicarbonate", 
      "source", 
      "differences", 
      "features", 
      "results", 
      "report", 
      "integration", 
      "detection", 
      "autonomous features", 
      "assessment", 
      "decomposition results", 
      "reaction factors"
    ], 
    "name": "Genome Analysis of Two Lichen Bacteriobionts, Lichenibacterium ramalinae and Lichenibacterium minor: Toxin\u2012Antitoxin Systems and Secretion Proteins", 
    "pagination": "160-172", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1146629954"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0026261722020096"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0026261722020096", 
      "https://app.dimensions.ai/details/publication/pub.1146629954"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-06-01T22:23", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_938.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s0026261722020096"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0026261722020096'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0026261722020096'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0026261722020096'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0026261722020096'


 

This table displays all metadata directly associated to this object as RDF triples.

179 TRIPLES      22 PREDICATES      103 URIs      87 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0026261722020096 schema:about anzsrc-for:06
2 anzsrc-for:0604
3 anzsrc-for:0605
4 anzsrc-for:0607
5 schema:author N8d3ae414ec4846cca2397b24596328fc
6 schema:citation sg:pub.10.1007/s00709-010-0156-2
7 sg:pub.10.1007/s10482-019-01357-6
8 sg:pub.10.1007/s13199-009-0049-3
9 sg:pub.10.1038/ismej.2009.63
10 sg:pub.10.1038/nrmicro2762
11 sg:pub.10.1134/s0026261717030134
12 schema:datePublished 2022-03-28
13 schema:datePublishedReg 2022-03-28
14 schema:description The genomes of two bacteriobionts of the fruticose lichen Ramalina pollinaria, Lichenibacterium ramalinae and L. minor, were analyzed. Genetic determinants potentially determining the integration and adaptation of these bacteria in the lichen thallus were identified. This is the first report on assessment of genetic determinants of the stress reaction factors and secretion systems of lichen bacteriobionts. The genes encoding the proteins of the VapCB toxin–antitoxin (TA) systems exhibited >60% homology with the genes of the known plant symbionts Bradyrhizobium, Sinorhizobium, Agrobacterium, Mesorhizobium, and Ralstonia, as well as with those of a human pathogen Bartonella. The genes encoding the proteins of type II secretion system were found in the genomes of both species. The genes encoding type IV secretion proteins were found only in the genome of L. ramalinae; they were homologous to those of epiphytic Methylobacterium, plant pathogens Agrobacterium, and plant root symbionts Rhizobium and Neorhizobium. Homology between the genes encoding TA system and secretion system proteins and the genes of plant-associated bacteria was over 60%. This may indicate that green algae are the main target for invasion. Detection of the urease synthesis genes in the genomes of lichen bacteriobionts suggested the hypothesis that urea decomposition results in an additional supply of ammonium and bicarbonate to the symbiosis. The latter may potentially be utilized by phototrophic eukaryotes and prokaryotes as an additional carbon source. Analysis of the genomes of lichen bacteriobionts L. ramalinae and L. minor revealed the possible differences in their survival strategies, with L. ramalinae more integrated into the symbiosis, while L. minor is characterized by more autonomous features.
15 schema:genre article
16 schema:inLanguage en
17 schema:isAccessibleForFree false
18 schema:isPartOf N5ecb5f6c95904bbcb73fca5693e4d194
19 Nf2ee5bef059f469ea5458058f0e52cd7
20 sg:journal.1327383
21 schema:keywords Agrobacterium
22 Bartonella
23 Bradyrhizobium
24 L. minor
25 Mesorhizobium
26 Methylobacterium
27 Neorhizobium
28 Ralstonia
29 Ramalina pollinaria
30 Sinorhizobium
31 TA systems
32 adaptation
33 additional carbon source
34 additional supply
35 algae
36 ammonium
37 analysis
38 assessment
39 autonomous features
40 bacteria
41 bicarbonate
42 carbon source
43 decomposition results
44 detection
45 determinants
46 differences
47 eukaryotes
48 factors
49 features
50 first report
51 genes
52 genetic determinants
53 genome
54 genome analysis
55 green algae
56 homology
57 hypothesis
58 integration
59 invasion
60 lichen thalli
61 main target
62 minors
63 phototrophic eukaryotes
64 plant pathogen Agrobacterium
65 plant-associated bacteria
66 pollinaria
67 possible differences
68 prokaryotes
69 protein
70 reaction factors
71 report
72 results
73 rhizobia
74 secretion proteins
75 secretion system
76 secretion system proteins
77 source
78 species
79 strategies
80 supply
81 survival strategies
82 symbiosis
83 synthesis genes
84 system
85 system proteins
86 target
87 thalli
88 toxin-antitoxin systems
89 type II secretion system
90 type IV secretion proteins
91 schema:name Genome Analysis of Two Lichen Bacteriobionts, Lichenibacterium ramalinae and Lichenibacterium minor: Toxin‒Antitoxin Systems and Secretion Proteins
92 schema:pagination 160-172
93 schema:productId N5e8502ae08ca47a48d6006ab5f01fb82
94 Nc8abfd98b21743f6915753cbc1e09ef3
95 schema:sameAs https://app.dimensions.ai/details/publication/pub.1146629954
96 https://doi.org/10.1134/s0026261722020096
97 schema:sdDatePublished 2022-06-01T22:23
98 schema:sdLicense https://scigraph.springernature.com/explorer/license/
99 schema:sdPublisher N1905c448a65a4c1187f7d24768b50d69
100 schema:url https://doi.org/10.1134/s0026261722020096
101 sgo:license sg:explorer/license/
102 sgo:sdDataset articles
103 rdf:type schema:ScholarlyArticle
104 N1905c448a65a4c1187f7d24768b50d69 schema:name Springer Nature - SN SciGraph project
105 rdf:type schema:Organization
106 N328bc41904514e6f973da80c13320f8a rdf:first sg:person.013510527250.66
107 rdf:rest N87a64abdcdf44eb2a52f5c31f5aa44d7
108 N5e8502ae08ca47a48d6006ab5f01fb82 schema:name dimensions_id
109 schema:value pub.1146629954
110 rdf:type schema:PropertyValue
111 N5ecb5f6c95904bbcb73fca5693e4d194 schema:issueNumber 2
112 rdf:type schema:PublicationIssue
113 N87a64abdcdf44eb2a52f5c31f5aa44d7 rdf:first sg:person.01236000324.05
114 rdf:rest rdf:nil
115 N8d3ae414ec4846cca2397b24596328fc rdf:first sg:person.016633033227.16
116 rdf:rest N328bc41904514e6f973da80c13320f8a
117 Nc8abfd98b21743f6915753cbc1e09ef3 schema:name doi
118 schema:value 10.1134/s0026261722020096
119 rdf:type schema:PropertyValue
120 Nf2ee5bef059f469ea5458058f0e52cd7 schema:volumeNumber 91
121 rdf:type schema:PublicationVolume
122 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
123 schema:name Biological Sciences
124 rdf:type schema:DefinedTerm
125 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
126 schema:name Genetics
127 rdf:type schema:DefinedTerm
128 anzsrc-for:0605 schema:inDefinedTermSet anzsrc-for:
129 schema:name Microbiology
130 rdf:type schema:DefinedTerm
131 anzsrc-for:0607 schema:inDefinedTermSet anzsrc-for:
132 schema:name Plant Biology
133 rdf:type schema:DefinedTerm
134 sg:journal.1327383 schema:issn 0026-2617
135 0026-3656
136 schema:name Microbiology
137 schema:publisher Pleiades Publishing
138 rdf:type schema:Periodical
139 sg:person.01236000324.05 schema:affiliation grid-institutes:grid.4886.2
140 schema:familyName Patutina
141 schema:givenName E. O.
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01236000324.05
143 rdf:type schema:Person
144 sg:person.013510527250.66 schema:affiliation grid-institutes:grid.14476.30
145 schema:familyName Nikitin
146 schema:givenName P. A.
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013510527250.66
148 rdf:type schema:Person
149 sg:person.016633033227.16 schema:affiliation grid-institutes:grid.4886.2
150 schema:familyName Pankratov
151 schema:givenName T. A.
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016633033227.16
153 rdf:type schema:Person
154 sg:pub.10.1007/s00709-010-0156-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038704734
155 https://doi.org/10.1007/s00709-010-0156-2
156 rdf:type schema:CreativeWork
157 sg:pub.10.1007/s10482-019-01357-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1122678543
158 https://doi.org/10.1007/s10482-019-01357-6
159 rdf:type schema:CreativeWork
160 sg:pub.10.1007/s13199-009-0049-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046613197
161 https://doi.org/10.1007/s13199-009-0049-3
162 rdf:type schema:CreativeWork
163 sg:pub.10.1038/ismej.2009.63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024017935
164 https://doi.org/10.1038/ismej.2009.63
165 rdf:type schema:CreativeWork
166 sg:pub.10.1038/nrmicro2762 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017691906
167 https://doi.org/10.1038/nrmicro2762
168 rdf:type schema:CreativeWork
169 sg:pub.10.1134/s0026261717030134 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085728305
170 https://doi.org/10.1134/s0026261717030134
171 rdf:type schema:CreativeWork
172 grid-institutes:grid.14476.30 schema:alternateName Faculty of Bioengineering and Bioinformatics, Moscow State University, 119192, Moscow, Russia
173 schema:name Faculty of Bioengineering and Bioinformatics, Moscow State University, 119192, Moscow, Russia
174 rdf:type schema:Organization
175 grid-institutes:grid.4886.2 schema:alternateName Skryabin Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, 119071, Moscow, Russia
176 Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, 119071, Moscow, Russia
177 schema:name Skryabin Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, 119071, Moscow, Russia
178 Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, 119071, Moscow, Russia
179 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...