Ontology type: schema:ScholarlyArticle
2022-02-12
AUTHORSA. A. Pyankova, E. G. Plotnikova
ABSTRACT—Screening of ability to utilize benzoate as the sole carbon and energy source was carried out for 124 strains of the family Halomonadaceae (genera Halomonas, Chromohalobacter, Salinicola, and Kushneria) isolated from mining sites of the Upper Kama deposit of potassium and magnesium salts. Active growth on benzoate (in the presence of 30‒70 g/L NaCl) was shown for 28 Halomonas strains closely related to the species H. taeanensis, H. olivaria, H. ventosae, H. titanicae, H. alkaliantarctica, H. neptunia, H. radicis, and H. sulfidaeris. Strains of the genera Chromohalobacter, Salinicola, and Kushneria either did not grow on benzoate or carried out its transformation (two Chromohalobacter strains). PCR screening for the benA gene encoding the α-subunit of benzoate 1,2-dioxygenase (1,2-DO), the key enzyme for benzoate degradation, within the family Halomonadaceae revealed its presence in all benzoate-degrading Halomonas strains. The sequences of the amplified fragments had the highest similarity (not exceeding 95.50%) with the genes encoding the α-subunits of benzoate 1,2-DO, 2-chlorobenzoate 1,2-DO, and other dioxygenases of Halomonas strains containing Rieske-type [2Fe-2S] clusters. New data on the genetic systems regulating benzoate degradation in Halomonas isolates are of interest for better understanding of molecular mechanisms of aromatics degradation under salinization conditions. The isolated active benzoate degraders may be used to develop the technologies for bioremediation and monitoring of polluted soils. More... »
PAGES91-103
http://scigraph.springernature.com/pub.10.1134/s0026261722010106
DOIhttp://dx.doi.org/10.1134/s0026261722010106
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1145496032
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Biological Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Genetics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Institute of Ecology and Genetics of Microorganisms, Ural Branch, Russian Academy of Sciences, 614081, Perm, Russia",
"id": "http://www.grid.ac/institutes/grid.466776.2",
"name": [
"Institute of Ecology and Genetics of Microorganisms, Ural Branch, Russian Academy of Sciences, 614081, Perm, Russia"
],
"type": "Organization"
},
"familyName": "Pyankova",
"givenName": "A. A.",
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institute of Ecology and Genetics of Microorganisms, Ural Branch, Russian Academy of Sciences, 614081, Perm, Russia",
"id": "http://www.grid.ac/institutes/grid.466776.2",
"name": [
"Institute of Ecology and Genetics of Microorganisms, Ural Branch, Russian Academy of Sciences, 614081, Perm, Russia"
],
"type": "Organization"
},
"familyName": "Plotnikova",
"givenName": "E. G.",
"id": "sg:person.01270503576.27",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01270503576.27"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/s00284-018-1497-x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1103624246",
"https://doi.org/10.1007/s00284-018-1497-x"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00404785",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1006363428",
"https://doi.org/10.1007/bf00404785"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1134/s0026261713020070",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1032600195",
"https://doi.org/10.1134/s0026261713020070"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/s40793-017-0251-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1090822797",
"https://doi.org/10.1186/s40793-017-0251-5"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1134/s000368381904015x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1117841872",
"https://doi.org/10.1134/s000368381904015x"
],
"type": "CreativeWork"
}
],
"datePublished": "2022-02-12",
"datePublishedReg": "2022-02-12",
"description": "Abstract\u2014Screening of ability to utilize benzoate as the sole carbon and energy source was carried out for 124\u00a0strains of the family Halomonadaceae (genera Halomonas, Chromohalobacter, Salinicola, and Kushneria) isolated from mining sites of the Upper Kama deposit of potassium and magnesium salts. Active growth on benzoate (in the presence of 30\u201270 g/L NaCl) was shown for 28 Halomonas strains closely related to the species H. taeanensis, H. olivaria, H. ventosae, H. titanicae, H. alkaliantarctica, H. neptunia, H. radicis, and H.\u00a0sulfidaeris. Strains of the genera Chromohalobacter, Salinicola, and Kushneria either did not grow on benzoate or carried out its transformation (two Chromohalobacter strains). PCR screening for the benA gene encoding the \u03b1-subunit of benzoate 1,2-dioxygenase (1,2-DO), the key enzyme for benzoate degradation, within the family Halomonadaceae revealed its presence in all benzoate-degrading Halomonas strains. The sequences of the amplified fragments had the highest similarity (not exceeding 95.50%) with the genes encoding the \u03b1-subunits of benzoate 1,2-DO, 2-chlorobenzoate 1,2-DO, and other dioxygenases of Halomonas strains containing Rieske-type [2Fe-2S] clusters. New data on the genetic systems regulating benzoate degradation in Halomonas isolates are of interest for better understanding of molecular mechanisms of aromatics degradation under salinization conditions. The isolated active benzoate degraders may be used to develop the technologies for bioremediation and monitoring of polluted soils.",
"genre": "article",
"id": "sg:pub.10.1134/s0026261722010106",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1327383",
"issn": [
"0026-3656",
"0026-2617"
],
"name": "Microbiology",
"publisher": "Pleiades Publishing",
"type": "Periodical"
},
{
"issueNumber": "1",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "91"
}
],
"keywords": [
"family Halomonadaceae",
"benA gene",
"benzoate degradation",
"\u03b1-subunit",
"Rieske-type [2Fe-2S] cluster",
"species diversity",
"genetic system",
"aromatic degradation",
"H. ventosae",
"molecular mechanisms",
"key enzyme",
"genus Chromohalobacter",
"high similarity",
"Halomonadaceae",
"Halomonas",
"genes",
"sole carbon",
"active growth",
"salinization conditions",
"H. titanicae",
"polluted soil",
"benzoate degraders",
"Kushneria",
"Salinicola",
"Neptunia",
"dioxygenases",
"Chromohalobacter",
"degradation",
"degraders",
"strains",
"diversity",
"bioremediation",
"enzyme",
"bacteria",
"better understanding",
"dioxygenase",
"sequence",
"PCR",
"mining sites",
"new data",
"fragments",
"isolates",
"similarity",
"growth",
"soil",
"Radicis",
"sites",
"mechanism",
"benzoate",
"clusters",
"mining area",
"understanding",
"ability",
"energy sources",
"presence",
"carbon",
"potassium",
"DO",
"analysis",
"conditions",
"source",
"transformation",
"data",
"area",
"salt",
"interest",
"system",
"technology",
"deposits",
"monitoring",
"magnesium salts",
"abstract screening",
"Upper Kama deposit"
],
"name": "Benzoate-Degrading Bacteria of the Family Halomonadaceae Isolated from a Salt Mining Area: Species Diversity and Analysis of the benA Genes",
"pagination": "91-103",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1145496032"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1134/s0026261722010106"
]
}
],
"sameAs": [
"https://doi.org/10.1134/s0026261722010106",
"https://app.dimensions.ai/details/publication/pub.1145496032"
],
"sdDataset": "articles",
"sdDatePublished": "2022-06-01T22:26",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_940.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1134/s0026261722010106"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0026261722010106'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0026261722010106'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0026261722010106'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0026261722010106'
This table displays all metadata directly associated to this object as RDF triples.
157 TRIPLES
22 PREDICATES
103 URIs
90 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1134/s0026261722010106 | schema:about | anzsrc-for:06 |
2 | ″ | ″ | anzsrc-for:0604 |
3 | ″ | schema:author | N32f92b38008540bab29236c795d5ab83 |
4 | ″ | schema:citation | sg:pub.10.1007/bf00404785 |
5 | ″ | ″ | sg:pub.10.1007/s00284-018-1497-x |
6 | ″ | ″ | sg:pub.10.1134/s000368381904015x |
7 | ″ | ″ | sg:pub.10.1134/s0026261713020070 |
8 | ″ | ″ | sg:pub.10.1186/s40793-017-0251-5 |
9 | ″ | schema:datePublished | 2022-02-12 |
10 | ″ | schema:datePublishedReg | 2022-02-12 |
11 | ″ | schema:description | Abstract—Screening of ability to utilize benzoate as the sole carbon and energy source was carried out for 124 strains of the family Halomonadaceae (genera Halomonas, Chromohalobacter, Salinicola, and Kushneria) isolated from mining sites of the Upper Kama deposit of potassium and magnesium salts. Active growth on benzoate (in the presence of 30‒70 g/L NaCl) was shown for 28 Halomonas strains closely related to the species H. taeanensis, H. olivaria, H. ventosae, H. titanicae, H. alkaliantarctica, H. neptunia, H. radicis, and H. sulfidaeris. Strains of the genera Chromohalobacter, Salinicola, and Kushneria either did not grow on benzoate or carried out its transformation (two Chromohalobacter strains). PCR screening for the benA gene encoding the α-subunit of benzoate 1,2-dioxygenase (1,2-DO), the key enzyme for benzoate degradation, within the family Halomonadaceae revealed its presence in all benzoate-degrading Halomonas strains. The sequences of the amplified fragments had the highest similarity (not exceeding 95.50%) with the genes encoding the α-subunits of benzoate 1,2-DO, 2-chlorobenzoate 1,2-DO, and other dioxygenases of Halomonas strains containing Rieske-type [2Fe-2S] clusters. New data on the genetic systems regulating benzoate degradation in Halomonas isolates are of interest for better understanding of molecular mechanisms of aromatics degradation under salinization conditions. The isolated active benzoate degraders may be used to develop the technologies for bioremediation and monitoring of polluted soils. |
12 | ″ | schema:genre | article |
13 | ″ | schema:inLanguage | en |
14 | ″ | schema:isAccessibleForFree | false |
15 | ″ | schema:isPartOf | N019e0155a56346159767b785e7466ab0 |
16 | ″ | ″ | N805c24ee93ec44c987af0a98bede7193 |
17 | ″ | ″ | sg:journal.1327383 |
18 | ″ | schema:keywords | Chromohalobacter |
19 | ″ | ″ | DO |
20 | ″ | ″ | H. titanicae |
21 | ″ | ″ | H. ventosae |
22 | ″ | ″ | Halomonadaceae |
23 | ″ | ″ | Halomonas |
24 | ″ | ″ | Kushneria |
25 | ″ | ″ | Neptunia |
26 | ″ | ″ | PCR |
27 | ″ | ″ | Radicis |
28 | ″ | ″ | Rieske-type [2Fe-2S] cluster |
29 | ″ | ″ | Salinicola |
30 | ″ | ″ | Upper Kama deposit |
31 | ″ | ″ | ability |
32 | ″ | ″ | abstract screening |
33 | ″ | ″ | active growth |
34 | ″ | ″ | analysis |
35 | ″ | ″ | area |
36 | ″ | ″ | aromatic degradation |
37 | ″ | ″ | bacteria |
38 | ″ | ″ | benA gene |
39 | ″ | ″ | benzoate |
40 | ″ | ″ | benzoate degradation |
41 | ″ | ″ | benzoate degraders |
42 | ″ | ″ | better understanding |
43 | ″ | ″ | bioremediation |
44 | ″ | ″ | carbon |
45 | ″ | ″ | clusters |
46 | ″ | ″ | conditions |
47 | ″ | ″ | data |
48 | ″ | ″ | degradation |
49 | ″ | ″ | degraders |
50 | ″ | ″ | deposits |
51 | ″ | ″ | dioxygenase |
52 | ″ | ″ | dioxygenases |
53 | ″ | ″ | diversity |
54 | ″ | ″ | energy sources |
55 | ″ | ″ | enzyme |
56 | ″ | ″ | family Halomonadaceae |
57 | ″ | ″ | fragments |
58 | ″ | ″ | genes |
59 | ″ | ″ | genetic system |
60 | ″ | ″ | genus Chromohalobacter |
61 | ″ | ″ | growth |
62 | ″ | ″ | high similarity |
63 | ″ | ″ | interest |
64 | ″ | ″ | isolates |
65 | ″ | ″ | key enzyme |
66 | ″ | ″ | magnesium salts |
67 | ″ | ″ | mechanism |
68 | ″ | ″ | mining area |
69 | ″ | ″ | mining sites |
70 | ″ | ″ | molecular mechanisms |
71 | ″ | ″ | monitoring |
72 | ″ | ″ | new data |
73 | ″ | ″ | polluted soil |
74 | ″ | ″ | potassium |
75 | ″ | ″ | presence |
76 | ″ | ″ | salinization conditions |
77 | ″ | ″ | salt |
78 | ″ | ″ | sequence |
79 | ″ | ″ | similarity |
80 | ″ | ″ | sites |
81 | ″ | ″ | soil |
82 | ″ | ″ | sole carbon |
83 | ″ | ″ | source |
84 | ″ | ″ | species diversity |
85 | ″ | ″ | strains |
86 | ″ | ″ | system |
87 | ″ | ″ | technology |
88 | ″ | ″ | transformation |
89 | ″ | ″ | understanding |
90 | ″ | ″ | α-subunit |
91 | ″ | schema:name | Benzoate-Degrading Bacteria of the Family Halomonadaceae Isolated from a Salt Mining Area: Species Diversity and Analysis of the benA Genes |
92 | ″ | schema:pagination | 91-103 |
93 | ″ | schema:productId | N83a591808b7143fc9e650d41826359ca |
94 | ″ | ″ | Nf2039433f08e4df495712dd6b49ea648 |
95 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1145496032 |
96 | ″ | ″ | https://doi.org/10.1134/s0026261722010106 |
97 | ″ | schema:sdDatePublished | 2022-06-01T22:26 |
98 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
99 | ″ | schema:sdPublisher | Nb1d83990e673478785b984a8432b6a76 |
100 | ″ | schema:url | https://doi.org/10.1134/s0026261722010106 |
101 | ″ | sgo:license | sg:explorer/license/ |
102 | ″ | sgo:sdDataset | articles |
103 | ″ | rdf:type | schema:ScholarlyArticle |
104 | N019e0155a56346159767b785e7466ab0 | schema:issueNumber | 1 |
105 | ″ | rdf:type | schema:PublicationIssue |
106 | N32f92b38008540bab29236c795d5ab83 | rdf:first | Nf53f0d6edc274eac9e72013c3a81fa24 |
107 | ″ | rdf:rest | N3dd3a5f4fc2745bdba3bb3c24d5f3483 |
108 | N3dd3a5f4fc2745bdba3bb3c24d5f3483 | rdf:first | sg:person.01270503576.27 |
109 | ″ | rdf:rest | rdf:nil |
110 | N805c24ee93ec44c987af0a98bede7193 | schema:volumeNumber | 91 |
111 | ″ | rdf:type | schema:PublicationVolume |
112 | N83a591808b7143fc9e650d41826359ca | schema:name | dimensions_id |
113 | ″ | schema:value | pub.1145496032 |
114 | ″ | rdf:type | schema:PropertyValue |
115 | Nb1d83990e673478785b984a8432b6a76 | schema:name | Springer Nature - SN SciGraph project |
116 | ″ | rdf:type | schema:Organization |
117 | Nf2039433f08e4df495712dd6b49ea648 | schema:name | doi |
118 | ″ | schema:value | 10.1134/s0026261722010106 |
119 | ″ | rdf:type | schema:PropertyValue |
120 | Nf53f0d6edc274eac9e72013c3a81fa24 | schema:affiliation | grid-institutes:grid.466776.2 |
121 | ″ | schema:familyName | Pyankova |
122 | ″ | schema:givenName | A. A. |
123 | ″ | rdf:type | schema:Person |
124 | anzsrc-for:06 | schema:inDefinedTermSet | anzsrc-for: |
125 | ″ | schema:name | Biological Sciences |
126 | ″ | rdf:type | schema:DefinedTerm |
127 | anzsrc-for:0604 | schema:inDefinedTermSet | anzsrc-for: |
128 | ″ | schema:name | Genetics |
129 | ″ | rdf:type | schema:DefinedTerm |
130 | sg:journal.1327383 | schema:issn | 0026-2617 |
131 | ″ | ″ | 0026-3656 |
132 | ″ | schema:name | Microbiology |
133 | ″ | schema:publisher | Pleiades Publishing |
134 | ″ | rdf:type | schema:Periodical |
135 | sg:person.01270503576.27 | schema:affiliation | grid-institutes:grid.466776.2 |
136 | ″ | schema:familyName | Plotnikova |
137 | ″ | schema:givenName | E. G. |
138 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01270503576.27 |
139 | ″ | rdf:type | schema:Person |
140 | sg:pub.10.1007/bf00404785 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1006363428 |
141 | ″ | ″ | https://doi.org/10.1007/bf00404785 |
142 | ″ | rdf:type | schema:CreativeWork |
143 | sg:pub.10.1007/s00284-018-1497-x | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1103624246 |
144 | ″ | ″ | https://doi.org/10.1007/s00284-018-1497-x |
145 | ″ | rdf:type | schema:CreativeWork |
146 | sg:pub.10.1134/s000368381904015x | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1117841872 |
147 | ″ | ″ | https://doi.org/10.1134/s000368381904015x |
148 | ″ | rdf:type | schema:CreativeWork |
149 | sg:pub.10.1134/s0026261713020070 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1032600195 |
150 | ″ | ″ | https://doi.org/10.1134/s0026261713020070 |
151 | ″ | rdf:type | schema:CreativeWork |
152 | sg:pub.10.1186/s40793-017-0251-5 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1090822797 |
153 | ″ | ″ | https://doi.org/10.1186/s40793-017-0251-5 |
154 | ″ | rdf:type | schema:CreativeWork |
155 | grid-institutes:grid.466776.2 | schema:alternateName | Institute of Ecology and Genetics of Microorganisms, Ural Branch, Russian Academy of Sciences, 614081, Perm, Russia |
156 | ″ | schema:name | Institute of Ecology and Genetics of Microorganisms, Ural Branch, Russian Academy of Sciences, 614081, Perm, Russia |
157 | ″ | rdf:type | schema:Organization |