Phylogenetic Diversity of the Sulfur Cycle Bacteria in the Bottom Sediments of the Chersonesus Bay View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-05

AUTHORS

A. L. Bryukhanov, M. A. Vlasova, T. V. Malakhova, A. A. Perevalova, N. V. Pimenov

ABSTRACT

The Black Sea is the largest meromictic basin, in the bottom sediments of which a powerful biogenic process of sulfide production occurs. The goal of the present work was to obtain data on phylogenetic diversity of the sulfur cycle microorganisms (sulfate-reducing and sulfur-oxidizing bacteria) in the Black Sea coastal gas-saturated bottom sediments. The samples were collected in the Chersonesus (Blue) Bay near Sevastopol from whitish bacterial mats of sulfurettes, and from the upper layer of the nearby seabed. Using DNA isolated from the native samples and obtained enrichment cultures, PCR analysis was performed with oligonucleotide primers specific to the fragments of the 16S rRNA genes of the main subgroups of sulfatereducing bacteria (SRB) and to the fragments of the dsrB gene (both reductive and oxidative types), encoding the β-subunit of dissimilatory (bi)sulfite reductase, the key enzyme in the sulfur cycle, inherent in both sulfate- reducing and sulfur-oxidizing microorganisms. The presence of 16S rRNA gene fragments specific to the genera Desulfobacterium, Desulfobacter, Desulfococcus–Desulfonema–Desulfosarcina, and Desulfovibrio–Desulfomicrobium was detected in the DNA samples isolated from coastal bottom bacterial mats. Usage of denaturing gradient gel electrophoresis (DGGE) with subsequent sequencing of reamplified dsrB gene fragments revealed that according to deduced amino acid sequences encoded by the dsrB gene (reductive type), SRB from the coastal gas-saturated bottom sediments of the Black Sea had the highest homology (92−99%) with the dsrB gene of cultured SRB belonging to the genera Desulfovibrio, Desulfatitalea, Desulfobacter, and Desulfobacterium, as well as with uncultured SRB strains from various marine habitats, such as bottom sediments of the Northern and Japanese seas. Deduced amino acid sequences encoded by the oxidative dsrB gene had the highest homology (90−99%) with the relevant sequences of the genera Thiocapsa, Thiobaca, Thioflavicoccus, and Thiorhodococcus. More... »

PAGES

372-381

Journal

TITLE

Microbiology

ISSUE

3

VOLUME

87

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0026261718030025

DOI

http://dx.doi.org/10.1134/s0026261718030025

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1104354653


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia", 
            "Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bryukhanov", 
        "givenName": "A. L.", 
        "id": "sg:person.010142612571.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010142612571.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vlasova", 
        "givenName": "M. A.", 
        "id": "sg:person.011561571252.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011561571252.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Kovalevsky Institute of Marine Biological Research, Russian Academy of Sciences, Sevastopol, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Malakhova", 
        "givenName": "T. V.", 
        "id": "sg:person.01167242740.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01167242740.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Perevalova", 
        "givenName": "A. A.", 
        "id": "sg:person.0767204047.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0767204047.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pimenov", 
        "givenName": "N. V.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1111/j.1462-2920.2006.01122.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002176707"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0278-4343(02)00055-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003107470"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0278-4343(02)00055-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003107470"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0045-6535(93)90442-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003889396"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0045-6535(93)90442-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003889396"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1462-2920.2012.02832.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006694491"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1462-2920.2007.01413.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010045906"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/molbev/msw054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012564990"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/ecss.2000.0666", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013054819"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00254-004-1083-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013876804", 
          "https://doi.org/10.1007/s00254-004-1083-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00254-004-1083-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013876804", 
          "https://doi.org/10.1007/s00254-004-1083-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jobm.200800278", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014652887"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1072502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014666277"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/94gb01800", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019058837"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0026261715060053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021129093", 
          "https://doi.org/10.1134/s0026261715060053"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mimet.2008.02.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026523650"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11021-005-0075-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029382401", 
          "https://doi.org/10.1007/s11021-005-0075-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11021-005-0075-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029382401", 
          "https://doi.org/10.1007/s11021-005-0075-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1462-2920.2008.01760.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029855713"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0026261713050093", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034651323", 
          "https://doi.org/10.1134/s0026261713050093"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02046728", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036383087", 
          "https://doi.org/10.1007/bf02046728"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02046728", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036383087", 
          "https://doi.org/10.1007/bf02046728"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/ecss.2000.0667", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037578489"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fmicb.2011.00253", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039077066"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fmicb.2012.00016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041112593"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35036572", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044282621", 
          "https://doi.org/10.1038/35036572"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35036572", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044282621", 
          "https://doi.org/10.1038/35036572"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fmicb.2016.01011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046813148"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1462-2920.2010.02380.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048374923"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s002626171101005x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049089236", 
          "https://doi.org/10.1134/s002626171101005x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ismej.2014.208", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049284089", 
          "https://doi.org/10.1038/ismej.2014.208"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aem.69.11.6481-6488.2003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050685247"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ismej.2010.75", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050791444", 
          "https://doi.org/10.1038/ismej.2010.75"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mimet.2005.11.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051969347"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1099/00221287-146-7-1693", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060370419"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3354/meps059039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071166242"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082464155", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083211592", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-05", 
    "datePublishedReg": "2018-05-01", 
    "description": "The Black Sea is the largest meromictic basin, in the bottom sediments of which a powerful biogenic process of sulfide production occurs. The goal of the present work was to obtain data on phylogenetic diversity of the sulfur cycle microorganisms (sulfate-reducing and sulfur-oxidizing bacteria) in the Black Sea coastal gas-saturated bottom sediments. The samples were collected in the Chersonesus (Blue) Bay near Sevastopol from whitish bacterial mats of sulfurettes, and from the upper layer of the nearby seabed. Using DNA isolated from the native samples and obtained enrichment cultures, PCR analysis was performed with oligonucleotide primers specific to the fragments of the 16S rRNA genes of the main subgroups of sulfatereducing bacteria (SRB) and to the fragments of the dsrB gene (both reductive and oxidative types), encoding the \u03b2-subunit of dissimilatory (bi)sulfite reductase, the key enzyme in the sulfur cycle, inherent in both sulfate- reducing and sulfur-oxidizing microorganisms. The presence of 16S rRNA gene fragments specific to the genera Desulfobacterium, Desulfobacter, Desulfococcus\u2013Desulfonema\u2013Desulfosarcina, and Desulfovibrio\u2013Desulfomicrobium was detected in the DNA samples isolated from coastal bottom bacterial mats. Usage of denaturing gradient gel electrophoresis (DGGE) with subsequent sequencing of reamplified dsrB gene fragments revealed that according to deduced amino acid sequences encoded by the dsrB gene (reductive type), SRB from the coastal gas-saturated bottom sediments of the Black Sea had the highest homology (92\u221299%) with the dsrB gene of cultured SRB belonging to the genera Desulfovibrio, Desulfatitalea, Desulfobacter, and Desulfobacterium, as well as with uncultured SRB strains from various marine habitats, such as bottom sediments of the Northern and Japanese seas. Deduced amino acid sequences encoded by the oxidative dsrB gene had the highest homology (90\u221299%) with the relevant sequences of the genera Thiocapsa, Thiobaca, Thioflavicoccus, and Thiorhodococcus.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s0026261718030025", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1327383", 
        "issn": [
          "0026-3656", 
          "0026-2617"
        ], 
        "name": "Microbiology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "87"
      }
    ], 
    "name": "Phylogenetic Diversity of the Sulfur Cycle Bacteria in the Bottom Sediments of the Chersonesus Bay", 
    "pagination": "372-381", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ef0a71f4db9bc1f8c83151fc4a6733d511e200fa231627bf46c306dae4ca76a9"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0026261718030025"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1104354653"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0026261718030025", 
      "https://app.dimensions.ai/details/publication/pub.1104354653"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T16:51", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000569.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1134%2FS0026261718030025"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0026261718030025'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0026261718030025'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0026261718030025'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0026261718030025'


 

This table displays all metadata directly associated to this object as RDF triples.

193 TRIPLES      21 PREDICATES      59 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0026261718030025 schema:about anzsrc-for:06
2 anzsrc-for:0604
3 schema:author N6273c052d2d74b999b4f3dc9bb283a6a
4 schema:citation sg:pub.10.1007/bf02046728
5 sg:pub.10.1007/s00254-004-1083-3
6 sg:pub.10.1007/s11021-005-0075-y
7 sg:pub.10.1038/35036572
8 sg:pub.10.1038/ismej.2010.75
9 sg:pub.10.1038/ismej.2014.208
10 sg:pub.10.1134/s002626171101005x
11 sg:pub.10.1134/s0026261713050093
12 sg:pub.10.1134/s0026261715060053
13 https://app.dimensions.ai/details/publication/pub.1082464155
14 https://app.dimensions.ai/details/publication/pub.1083211592
15 https://doi.org/10.1002/jobm.200800278
16 https://doi.org/10.1006/ecss.2000.0666
17 https://doi.org/10.1006/ecss.2000.0667
18 https://doi.org/10.1016/0045-6535(93)90442-8
19 https://doi.org/10.1016/j.mimet.2005.11.002
20 https://doi.org/10.1016/j.mimet.2008.02.020
21 https://doi.org/10.1016/s0278-4343(02)00055-9
22 https://doi.org/10.1029/94gb01800
23 https://doi.org/10.1093/molbev/msw054
24 https://doi.org/10.1099/00221287-146-7-1693
25 https://doi.org/10.1111/j.1462-2920.2006.01122.x
26 https://doi.org/10.1111/j.1462-2920.2007.01413.x
27 https://doi.org/10.1111/j.1462-2920.2008.01760.x
28 https://doi.org/10.1111/j.1462-2920.2010.02380.x
29 https://doi.org/10.1111/j.1462-2920.2012.02832.x
30 https://doi.org/10.1126/science.1072502
31 https://doi.org/10.1128/aem.69.11.6481-6488.2003
32 https://doi.org/10.3354/meps059039
33 https://doi.org/10.3389/fmicb.2011.00253
34 https://doi.org/10.3389/fmicb.2012.00016
35 https://doi.org/10.3389/fmicb.2016.01011
36 schema:datePublished 2018-05
37 schema:datePublishedReg 2018-05-01
38 schema:description The Black Sea is the largest meromictic basin, in the bottom sediments of which a powerful biogenic process of sulfide production occurs. The goal of the present work was to obtain data on phylogenetic diversity of the sulfur cycle microorganisms (sulfate-reducing and sulfur-oxidizing bacteria) in the Black Sea coastal gas-saturated bottom sediments. The samples were collected in the Chersonesus (Blue) Bay near Sevastopol from whitish bacterial mats of sulfurettes, and from the upper layer of the nearby seabed. Using DNA isolated from the native samples and obtained enrichment cultures, PCR analysis was performed with oligonucleotide primers specific to the fragments of the 16S rRNA genes of the main subgroups of sulfatereducing bacteria (SRB) and to the fragments of the dsrB gene (both reductive and oxidative types), encoding the β-subunit of dissimilatory (bi)sulfite reductase, the key enzyme in the sulfur cycle, inherent in both sulfate- reducing and sulfur-oxidizing microorganisms. The presence of 16S rRNA gene fragments specific to the genera Desulfobacterium, Desulfobacter, Desulfococcus–Desulfonema–Desulfosarcina, and Desulfovibrio–Desulfomicrobium was detected in the DNA samples isolated from coastal bottom bacterial mats. Usage of denaturing gradient gel electrophoresis (DGGE) with subsequent sequencing of reamplified dsrB gene fragments revealed that according to deduced amino acid sequences encoded by the dsrB gene (reductive type), SRB from the coastal gas-saturated bottom sediments of the Black Sea had the highest homology (92−99%) with the dsrB gene of cultured SRB belonging to the genera Desulfovibrio, Desulfatitalea, Desulfobacter, and Desulfobacterium, as well as with uncultured SRB strains from various marine habitats, such as bottom sediments of the Northern and Japanese seas. Deduced amino acid sequences encoded by the oxidative dsrB gene had the highest homology (90−99%) with the relevant sequences of the genera Thiocapsa, Thiobaca, Thioflavicoccus, and Thiorhodococcus.
39 schema:genre research_article
40 schema:inLanguage en
41 schema:isAccessibleForFree false
42 schema:isPartOf N4f9e63a3f7a9410d97027562acb29332
43 N501003a451824aa0a8ca553e99f2ebf9
44 sg:journal.1327383
45 schema:name Phylogenetic Diversity of the Sulfur Cycle Bacteria in the Bottom Sediments of the Chersonesus Bay
46 schema:pagination 372-381
47 schema:productId N12f912b5ce194d1f892f40c11aac879a
48 N7413a706c0644f9185c318ec06140cb3
49 Nad08be33ea8740498a61b63bcf17ccbc
50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104354653
51 https://doi.org/10.1134/s0026261718030025
52 schema:sdDatePublished 2019-04-10T16:51
53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
54 schema:sdPublisher N595b09ffb5804ba48ddfdce82dca430a
55 schema:url https://link.springer.com/10.1134%2FS0026261718030025
56 sgo:license sg:explorer/license/
57 sgo:sdDataset articles
58 rdf:type schema:ScholarlyArticle
59 N01d228bab4d04944994d8c8b7f14922e rdf:first Ndfcd39f274e540978df4052d0b36da55
60 rdf:rest rdf:nil
61 N12f912b5ce194d1f892f40c11aac879a schema:name readcube_id
62 schema:value ef0a71f4db9bc1f8c83151fc4a6733d511e200fa231627bf46c306dae4ca76a9
63 rdf:type schema:PropertyValue
64 N4f9e63a3f7a9410d97027562acb29332 schema:issueNumber 3
65 rdf:type schema:PublicationIssue
66 N501003a451824aa0a8ca553e99f2ebf9 schema:volumeNumber 87
67 rdf:type schema:PublicationVolume
68 N595b09ffb5804ba48ddfdce82dca430a schema:name Springer Nature - SN SciGraph project
69 rdf:type schema:Organization
70 N6273c052d2d74b999b4f3dc9bb283a6a rdf:first sg:person.010142612571.27
71 rdf:rest Nde9791bf15d34c43840e87439836113f
72 N6e8b949c0d2c4e63b3363af43b9e6645 rdf:first sg:person.01167242740.53
73 rdf:rest N8f7a87fb6f834b41b8a277aaf37f4ae4
74 N7413a706c0644f9185c318ec06140cb3 schema:name dimensions_id
75 schema:value pub.1104354653
76 rdf:type schema:PropertyValue
77 N8f7a87fb6f834b41b8a277aaf37f4ae4 rdf:first sg:person.0767204047.94
78 rdf:rest N01d228bab4d04944994d8c8b7f14922e
79 Nad08be33ea8740498a61b63bcf17ccbc schema:name doi
80 schema:value 10.1134/s0026261718030025
81 rdf:type schema:PropertyValue
82 Nde9791bf15d34c43840e87439836113f rdf:first sg:person.011561571252.28
83 rdf:rest N6e8b949c0d2c4e63b3363af43b9e6645
84 Ndfcd39f274e540978df4052d0b36da55 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
85 schema:familyName Pimenov
86 schema:givenName N. V.
87 rdf:type schema:Person
88 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
89 schema:name Biological Sciences
90 rdf:type schema:DefinedTerm
91 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
92 schema:name Genetics
93 rdf:type schema:DefinedTerm
94 sg:journal.1327383 schema:issn 0026-2617
95 0026-3656
96 schema:name Microbiology
97 rdf:type schema:Periodical
98 sg:person.010142612571.27 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
99 schema:familyName Bryukhanov
100 schema:givenName A. L.
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010142612571.27
102 rdf:type schema:Person
103 sg:person.011561571252.28 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
104 schema:familyName Vlasova
105 schema:givenName M. A.
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011561571252.28
107 rdf:type schema:Person
108 sg:person.01167242740.53 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
109 schema:familyName Malakhova
110 schema:givenName T. V.
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01167242740.53
112 rdf:type schema:Person
113 sg:person.0767204047.94 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
114 schema:familyName Perevalova
115 schema:givenName A. A.
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0767204047.94
117 rdf:type schema:Person
118 sg:pub.10.1007/bf02046728 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036383087
119 https://doi.org/10.1007/bf02046728
120 rdf:type schema:CreativeWork
121 sg:pub.10.1007/s00254-004-1083-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013876804
122 https://doi.org/10.1007/s00254-004-1083-3
123 rdf:type schema:CreativeWork
124 sg:pub.10.1007/s11021-005-0075-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1029382401
125 https://doi.org/10.1007/s11021-005-0075-y
126 rdf:type schema:CreativeWork
127 sg:pub.10.1038/35036572 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044282621
128 https://doi.org/10.1038/35036572
129 rdf:type schema:CreativeWork
130 sg:pub.10.1038/ismej.2010.75 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050791444
131 https://doi.org/10.1038/ismej.2010.75
132 rdf:type schema:CreativeWork
133 sg:pub.10.1038/ismej.2014.208 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049284089
134 https://doi.org/10.1038/ismej.2014.208
135 rdf:type schema:CreativeWork
136 sg:pub.10.1134/s002626171101005x schema:sameAs https://app.dimensions.ai/details/publication/pub.1049089236
137 https://doi.org/10.1134/s002626171101005x
138 rdf:type schema:CreativeWork
139 sg:pub.10.1134/s0026261713050093 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034651323
140 https://doi.org/10.1134/s0026261713050093
141 rdf:type schema:CreativeWork
142 sg:pub.10.1134/s0026261715060053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021129093
143 https://doi.org/10.1134/s0026261715060053
144 rdf:type schema:CreativeWork
145 https://app.dimensions.ai/details/publication/pub.1082464155 schema:CreativeWork
146 https://app.dimensions.ai/details/publication/pub.1083211592 schema:CreativeWork
147 https://doi.org/10.1002/jobm.200800278 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014652887
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1006/ecss.2000.0666 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013054819
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1006/ecss.2000.0667 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037578489
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/0045-6535(93)90442-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003889396
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/j.mimet.2005.11.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051969347
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/j.mimet.2008.02.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026523650
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/s0278-4343(02)00055-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003107470
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1029/94gb01800 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019058837
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1093/molbev/msw054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012564990
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1099/00221287-146-7-1693 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060370419
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1111/j.1462-2920.2006.01122.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1002176707
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1111/j.1462-2920.2007.01413.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1010045906
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1111/j.1462-2920.2008.01760.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1029855713
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1111/j.1462-2920.2010.02380.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1048374923
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1111/j.1462-2920.2012.02832.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1006694491
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1126/science.1072502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014666277
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1128/aem.69.11.6481-6488.2003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050685247
180 rdf:type schema:CreativeWork
181 https://doi.org/10.3354/meps059039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071166242
182 rdf:type schema:CreativeWork
183 https://doi.org/10.3389/fmicb.2011.00253 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039077066
184 rdf:type schema:CreativeWork
185 https://doi.org/10.3389/fmicb.2012.00016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041112593
186 rdf:type schema:CreativeWork
187 https://doi.org/10.3389/fmicb.2016.01011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046813148
188 rdf:type schema:CreativeWork
189 https://www.grid.ac/institutes/grid.4886.2 schema:alternateName Russian Academy of Sciences
190 schema:name Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
191 Kovalevsky Institute of Marine Biological Research, Russian Academy of Sciences, Sevastopol, Russia
192 Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
193 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...